Analytical and numerical study of differential error equations for autonomous strapdown INS functioning in normal geographic frame

M. Loginov, Y. Chelnokov
{"title":"Analytical and numerical study of differential error equations for autonomous strapdown INS functioning in normal geographic frame","authors":"M. Loginov, Y. Chelnokov","doi":"10.23919/ICINS.2018.8405913","DOIUrl":null,"url":null,"abstract":"This paper presents the results of analytical and numerical study of nonhomogeneous full (nonlinear) and linear (linearized) differential error equations for autonomous strapdown INS, functioning in the normal geographic frame, which were derived earlier by the authors of this paper. These equations form the tenth-order system of nonstationary differential equations for object's altitude, latitude and longitude errors, northerly, vertical and easterly components of object's relative velocity error, and the errors for Rodrigues-Hamilton (Euler) parameters, which describe the orientation of an object in the normal geographic frame. Analytical estimates of strapdown INS errors are derived. For the three particular cases of object's motion, the analytical solutions are derived for the linear nonhomogeneous differential error equations for strapdown INS, and the following formulas are obtained: exact explicit formulas, which express the roots of the sixth-order characteristic equations, which characterize the intrinsic dynamics of strapdown INS and its instability for those particular cases of object's motion, through the parameters of object's unperturbed motion; the formulas for the amplitudes, frequencies, initial phases of harmonic components of the laws of variation of the errors of object's altitude, latitude, longitude, relative velocity projections; the formulas for the exponents of exponential components of these errors, which characterize their decrease or increase over time (these formulas characterize intrinsic dynamics of the INS).","PeriodicalId":243907,"journal":{"name":"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICINS.2018.8405913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results of analytical and numerical study of nonhomogeneous full (nonlinear) and linear (linearized) differential error equations for autonomous strapdown INS, functioning in the normal geographic frame, which were derived earlier by the authors of this paper. These equations form the tenth-order system of nonstationary differential equations for object's altitude, latitude and longitude errors, northerly, vertical and easterly components of object's relative velocity error, and the errors for Rodrigues-Hamilton (Euler) parameters, which describe the orientation of an object in the normal geographic frame. Analytical estimates of strapdown INS errors are derived. For the three particular cases of object's motion, the analytical solutions are derived for the linear nonhomogeneous differential error equations for strapdown INS, and the following formulas are obtained: exact explicit formulas, which express the roots of the sixth-order characteristic equations, which characterize the intrinsic dynamics of strapdown INS and its instability for those particular cases of object's motion, through the parameters of object's unperturbed motion; the formulas for the amplitudes, frequencies, initial phases of harmonic components of the laws of variation of the errors of object's altitude, latitude, longitude, relative velocity projections; the formulas for the exponents of exponential components of these errors, which characterize their decrease or increase over time (these formulas characterize intrinsic dynamics of the INS).
正常地理框架下自主捷联惯导系统的微分误差方程分析与数值研究
本文介绍了作者先前推导的在正常地理框架下工作的自主捷联惯导系统的非齐次全(非线性)和线性(线性化)微分误差方程的解析和数值研究结果。这些方程构成了物体高度、纬度和经度误差、物体相对速度误差的向北、垂直和向东分量以及描述物体在正常地理框架中的方向的Rodrigues-Hamilton (Euler)参数误差的十阶非平稳微分方程系统。推导了捷联惯导系统误差的分析估计。针对三种特定的目标运动情况,导出了捷联惯导系统线性非齐次微分误差方程的解析解,得到了以下公式:通过目标无摄动运动参数来表征捷联惯导系统在特定目标运动情况下的内在动力学和不稳定性的六阶特征方程的精确显式根;物体的高度、纬度、经度、相对速度投影误差的变化规律的谐波分量的幅值、频率、初相的计算公式;这些误差的指数分量的指数公式,表征了它们随时间的减少或增加(这些公式表征了国际惯性系统的内在动力学)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信