A Dynamic Fuzzy Neural Adaptive Control algorithm and its application

Di Guo, Yang Wang, Chen Guo
{"title":"A Dynamic Fuzzy Neural Adaptive Control algorithm and its application","authors":"Di Guo, Yang Wang, Chen Guo","doi":"10.1109/ICCA.2010.5524125","DOIUrl":null,"url":null,"abstract":"The uncertainties coursing by the changing of modeling parameters should be considered when modeling and controlling a kind of nonlinear dynamic systems. A Dynamic Fuzzy Neural Adaptive Control (DFNAC) algorithm is presented in the paper. The DFNAC combines a Dynamic Fuzzy Neural Networks (DFNN) with a PID controller. DFNN adjusts its structure and parameters online, and generates the fuzzy rules automatically when being trained. The algorithm conquers the disadvantage of either overfitting or overtraining in traditional static FNN-based control methods. Simulation results of the course control of a container ship validate the effectiveness of the proposed algorithm.","PeriodicalId":155562,"journal":{"name":"IEEE ICCA 2010","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ICCA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2010.5524125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The uncertainties coursing by the changing of modeling parameters should be considered when modeling and controlling a kind of nonlinear dynamic systems. A Dynamic Fuzzy Neural Adaptive Control (DFNAC) algorithm is presented in the paper. The DFNAC combines a Dynamic Fuzzy Neural Networks (DFNN) with a PID controller. DFNN adjusts its structure and parameters online, and generates the fuzzy rules automatically when being trained. The algorithm conquers the disadvantage of either overfitting or overtraining in traditional static FNN-based control methods. Simulation results of the course control of a container ship validate the effectiveness of the proposed algorithm.
动态模糊神经自适应控制算法及其应用
在对一类非线性动态系统进行建模和控制时,必须考虑建模参数变化所带来的不确定性。提出了一种动态模糊神经自适应控制(DFNAC)算法。DFNAC将动态模糊神经网络(DFNN)与PID控制器相结合。DFNN在线调整结构和参数,并在训练过程中自动生成模糊规则。该算法克服了传统静态fnn控制方法存在的过拟合和过度训练的缺点。对某集装箱船舶航向控制的仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信