Multi-Objective Deep CNN for Outdoor Auto-Navigation

Wu Wei, Shuai He, Dongliang Wang, Yao Yeboah
{"title":"Multi-Objective Deep CNN for Outdoor Auto-Navigation","authors":"Wu Wei, Shuai He, Dongliang Wang, Yao Yeboah","doi":"10.1145/3234804.3234823","DOIUrl":null,"url":null,"abstract":"Target-guided navigation establishes the foundation for efficiently addressing vision-based multi-agent coordination for robotics. This work proposes a multi-objective deep convolution network which consists of two parallel branches built atop a shared feature extractor. The proposed network is capable of concurrently constructing semantic maps while achieving efficient visual detection of a designated guider robot or landmark towards outdoor navigation. In order to achieve the low latency requirements of the navigation controller, the structure and parameters of the network have been meticulously designed to boost run-time performance. The model is trained and tested on an altered version of the Cityscape outdoor dataset. We further finetune using a collected dataset in order to improve generalization performance on unseen outdoor scenes. Experimental results on an outdoor navigation robot equipped with an RGBD camera and GPU mini PC verifies the feasibility of the model.","PeriodicalId":118446,"journal":{"name":"International Conference on Deep Learning Technologies","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234804.3234823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Target-guided navigation establishes the foundation for efficiently addressing vision-based multi-agent coordination for robotics. This work proposes a multi-objective deep convolution network which consists of two parallel branches built atop a shared feature extractor. The proposed network is capable of concurrently constructing semantic maps while achieving efficient visual detection of a designated guider robot or landmark towards outdoor navigation. In order to achieve the low latency requirements of the navigation controller, the structure and parameters of the network have been meticulously designed to boost run-time performance. The model is trained and tested on an altered version of the Cityscape outdoor dataset. We further finetune using a collected dataset in order to improve generalization performance on unseen outdoor scenes. Experimental results on an outdoor navigation robot equipped with an RGBD camera and GPU mini PC verifies the feasibility of the model.
用于户外自动导航的多目标深度CNN
目标引导导航为有效解决基于视觉的机器人多智能体协调问题奠定了基础。本文提出了一个多目标深度卷积网络,该网络由建立在共享特征提取器之上的两个并行分支组成。该网络能够同时构建语义地图,同时实现对室外导航的指定引导机器人或地标的有效视觉检测。为了达到导航控制器的低延迟要求,我们精心设计了网络的结构和参数,以提高运行时性能。该模型在Cityscape户外数据集的修改版本上进行训练和测试。我们进一步使用收集的数据集进行微调,以提高对未见过的户外场景的泛化性能。在配备RGBD相机和GPU迷你PC机的户外导航机器人上的实验结果验证了该模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信