{"title":"Proposal of non-rotating joint drive type high output power assist suit for squat lifting","authors":"Shun Mohri, H. Inose, Hirokazu Arakawa, Kazuya Yokoyama, Yasuyuki Yamada, Isao Kikutani, Taro Nakamura","doi":"10.1109/ROMAN.2017.8172460","DOIUrl":null,"url":null,"abstract":"Lower back pain is a major health concern worldwide. One cause of lower back pain is the burden on the lumbar region caused by the handling of heavy objects. To reduce this burden, the Ministry of Health, Labour and Welfare in Japan has recommended “squat lifting.” However, this technique, which supports a large force on lower limbs, is not very popular. Therefore, we aimed to develop a power assist suit for squat lifting. In this paper, we propose a gastrocnemius-reinforcing mechanism. Next, we discuss estimation of joint torque from motion analysis of squat lifting in order to construct a prototype. Finally, we describe the performance of the prototype mounted on a human body. The %MVC of the gastrocnemius while performing squat lifting was reduced by 40% using the prototype assist suit compared with the value without using the suit.","PeriodicalId":134777,"journal":{"name":"2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","volume":"591 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2017.8172460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Lower back pain is a major health concern worldwide. One cause of lower back pain is the burden on the lumbar region caused by the handling of heavy objects. To reduce this burden, the Ministry of Health, Labour and Welfare in Japan has recommended “squat lifting.” However, this technique, which supports a large force on lower limbs, is not very popular. Therefore, we aimed to develop a power assist suit for squat lifting. In this paper, we propose a gastrocnemius-reinforcing mechanism. Next, we discuss estimation of joint torque from motion analysis of squat lifting in order to construct a prototype. Finally, we describe the performance of the prototype mounted on a human body. The %MVC of the gastrocnemius while performing squat lifting was reduced by 40% using the prototype assist suit compared with the value without using the suit.