MANAGING DATA WITH DATA MINING

D. Beeharry, V. Beeharry
{"title":"MANAGING DATA WITH DATA MINING","authors":"D. Beeharry, V. Beeharry","doi":"10.24924/ijise/2018.11/v6.iss2/153.163","DOIUrl":null,"url":null,"abstract":"Big Data concern vast volume, unpredictable, developing informational collections with various, self-governing sources with the quick advancement of systems administration information stockpiling, and the information accumulation limit, Big Data is presently quickly growing in all science and building areas, including physical, organic and biomedical sciences. This paper exhibits a HACE hypothesis that portrays the highlights of the Big Data upheaval, and proposes a Big Data handling model, from the information mining point of view. This information-driven model includes request driven collection of data sources, mining and investigation, client enthusiasm displaying, and security and protection contemplations. Investigating the testing issues in the information-driven model and furthermore in the Big Data transformation. The system is able to collaborate all of the common data into one object for easier analysis. Key Terms: Data, mining, data mining.","PeriodicalId":314672,"journal":{"name":"International Journal of Information System and Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information System and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24924/ijise/2018.11/v6.iss2/153.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Big Data concern vast volume, unpredictable, developing informational collections with various, self-governing sources with the quick advancement of systems administration information stockpiling, and the information accumulation limit, Big Data is presently quickly growing in all science and building areas, including physical, organic and biomedical sciences. This paper exhibits a HACE hypothesis that portrays the highlights of the Big Data upheaval, and proposes a Big Data handling model, from the information mining point of view. This information-driven model includes request driven collection of data sources, mining and investigation, client enthusiasm displaying, and security and protection contemplations. Investigating the testing issues in the information-driven model and furthermore in the Big Data transformation. The system is able to collaborate all of the common data into one object for easier analysis. Key Terms: Data, mining, data mining.
使用数据挖掘管理数据
大数据涉及海量、不可预测、发展中、来源自治的信息集合,随着系统管理信息存储的快速发展和信息积累的限制,大数据目前在包括物理、有机和生物医学在内的所有科学和建筑领域迅速发展。本文展示了一个HACE假设,描绘了大数据剧变的亮点,并从信息挖掘的角度提出了一个大数据处理模型。这个信息驱动的模型包括请求驱动的数据源收集、挖掘和调查、客户热情显示以及安全和保护考虑。研究信息驱动模型和大数据转换中的测试问题。该系统能够将所有公共数据协作到一个对象中,以便于分析。关键词:数据,挖掘,数据挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信