Pattern recognition with fuzzy neural network

V. Guštin, J. Virant
{"title":"Pattern recognition with fuzzy neural network","authors":"V. Guštin,&nbsp;J. Virant","doi":"10.1016/0165-6074(94)90073-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explains the character code recognition with the Boolean classifier. The binary values are used both for inputs and outputs, while the learning of the circuit with a set of patterns is done by modified algorithms used in some Boolean neural networks. The use of the fuzzy logic approach offers the possibility of creating a character recognition theory which is fault-tolerant and applicable to all sorts of typefaces and fonts. It provides several examples of patterns scanned with different resolutions and learned with a part of the same set of samples which demonstrates the quality of the fuzzy Boolea classifier.</p></div>","PeriodicalId":100927,"journal":{"name":"Microprocessing and Microprogramming","volume":"40 10","pages":"Pages 935-938"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0165-6074(94)90073-6","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessing and Microprogramming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0165607494900736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper explains the character code recognition with the Boolean classifier. The binary values are used both for inputs and outputs, while the learning of the circuit with a set of patterns is done by modified algorithms used in some Boolean neural networks. The use of the fuzzy logic approach offers the possibility of creating a character recognition theory which is fault-tolerant and applicable to all sorts of typefaces and fonts. It provides several examples of patterns scanned with different resolutions and learned with a part of the same set of samples which demonstrates the quality of the fuzzy Boolea classifier.

基于模糊神经网络的模式识别
本文阐述了布尔分类器在字符码识别中的应用。二进制值用于输入和输出,而具有一组模式的电路的学习是由一些布尔神经网络中使用的改进算法完成的。模糊逻辑方法的使用为创建一种容错的、适用于各种字体和字体的字符识别理论提供了可能性。它提供了几个以不同分辨率扫描的模式示例,并使用同一组样本的一部分进行学习,这证明了模糊Boolea分类器的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信