Optimal preprocessing and FCM clustering of MIR, NIR and combined MIR-NIR spectra for classification of maize roots

Abbas Rammal, E. Perrin, V. Vrabie, I. Bertrand, A. Habrant, B. Chabbert
{"title":"Optimal preprocessing and FCM clustering of MIR, NIR and combined MIR-NIR spectra for classification of maize roots","authors":"Abbas Rammal, E. Perrin, V. Vrabie, I. Bertrand, A. Habrant, B. Chabbert","doi":"10.1109/ICEND.2014.6991363","DOIUrl":null,"url":null,"abstract":"InfraRed spectroscopy (IR) provides useful information of the molecular composition of biological systems. Mid-InfraRed (MIR) spectroscopy reflects fundamental molecular vibrations whereas Near-InfraRed (NIR) spectroscopy exhibits the overtones and combinations of fundamental vibrations and bonds. In most applications, the samples are mixed with potassium bromide (KBr) powder, or simply unmixed. Two technics are investigated: IR absorption on mixed samples and Diffuse Reflectance IR Fourier Transform (DRIFT) on unmixed samples. IR spectra are collected in either MIR or NIR regions. However, the preprocessing of IR spectra, the choice of the spectral band and the combination of MIR-NIR information are important factors that could substantially influence analyses. This study investigates these factors while attempting to retrieve three different genotypes of maize roots via a Fuzzy C-Mean (FCM) classification of IR spectra. A bootstrapping procedure is used as the number of samples is limited. Results show that KBr spectroscopy is better than DRIFT spectroscopy for MIR region; MIR provides equivalent information as NIR for DRIFT spectroscopy; combination of MIR-NIR information gives preprocessing independent results. Several distances are tested in FCM classification. The city bloc distance gives optimal results compared with Euclidean, Chebyshev, correlation and diagonal distance.","PeriodicalId":421311,"journal":{"name":"The Third International Conference on e-Technologies and Networks for Development (ICeND2014)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Third International Conference on e-Technologies and Networks for Development (ICeND2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEND.2014.6991363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

InfraRed spectroscopy (IR) provides useful information of the molecular composition of biological systems. Mid-InfraRed (MIR) spectroscopy reflects fundamental molecular vibrations whereas Near-InfraRed (NIR) spectroscopy exhibits the overtones and combinations of fundamental vibrations and bonds. In most applications, the samples are mixed with potassium bromide (KBr) powder, or simply unmixed. Two technics are investigated: IR absorption on mixed samples and Diffuse Reflectance IR Fourier Transform (DRIFT) on unmixed samples. IR spectra are collected in either MIR or NIR regions. However, the preprocessing of IR spectra, the choice of the spectral band and the combination of MIR-NIR information are important factors that could substantially influence analyses. This study investigates these factors while attempting to retrieve three different genotypes of maize roots via a Fuzzy C-Mean (FCM) classification of IR spectra. A bootstrapping procedure is used as the number of samples is limited. Results show that KBr spectroscopy is better than DRIFT spectroscopy for MIR region; MIR provides equivalent information as NIR for DRIFT spectroscopy; combination of MIR-NIR information gives preprocessing independent results. Several distances are tested in FCM classification. The city bloc distance gives optimal results compared with Euclidean, Chebyshev, correlation and diagonal distance.
MIR、NIR及MIR-NIR联合光谱的优化预处理和FCM聚类用于玉米根系分类
红外光谱(IR)提供了生物系统分子组成的有用信息。中红外(MIR)光谱反映基本分子振动,而近红外(NIR)光谱显示基本振动和键的泛音和组合。在大多数应用中,样品与溴化钾(KBr)粉末混合,或简单地不混合。研究了两种技术:混合样品的红外吸收和未混合样品的漫反射红外傅里叶变换(DRIFT)。红外光谱在近红外或近红外区域收集。然而,红外光谱的预处理、光谱波段的选择以及MIR-NIR信息的组合是可能对分析产生实质性影响的重要因素。本研究试图通过红外光谱模糊c均值(FCM)分类检索玉米根系的三种不同基因型,同时对这些因素进行了研究。由于样本数量有限,采用了自举过程。结果表明,在MIR区,KBr光谱优于DRIFT光谱;MIR为漂移光谱提供了与近红外相当的信息;MIR-NIR信息组合得到预处理独立结果。在FCM分类中测试了几个距离。与欧氏距离、切比雪夫距离、相关距离和对角线距离相比,城市群距离给出了最优的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信