Neural Network for Identification of Heat integrated Distillation Column

Shahana P K, Abdul-Kareem Jaleel, P. N
{"title":"Neural Network for Identification of Heat integrated Distillation Column","authors":"Shahana P K, Abdul-Kareem Jaleel, P. N","doi":"10.1109/ICFCR50903.2020.9249964","DOIUrl":null,"url":null,"abstract":"The heat integrated distillation column (HIDC), one of the most advantageous energy saving technique for separation of two liquids with distinct boiling point. The dynamic and nonlinear nature of distillation column make it a challenging problem for control engineers. Artificial neural network (ANN) is used for the nonlinear identification of HIDC. The nonlinear autoregressive network with exogenous input (NARX) model is also created to map the dynamic nature. Chemical process simulator Aspen HYSYS software is used to obtain realistic model of column and also for data sets. The mole fraction of top composition (benzene) and mole fraction of bottom composition (toluene) are taken as output variables, reflux rate and tray15 temperature are the input variables. Of 2000 samples collected from HYSIS, 1500 samples used for training the network and remaining for validation of the model. This will guarantee accuracy and robustness. The performance of both (back propagation) BP-ANN and NARX-BP-ANN are compared. The regression coefficient and root mean square error (rmse) of models with 12 different algorithms and different hidden layers calculated.","PeriodicalId":165947,"journal":{"name":"2020 International Conference on Futuristic Technologies in Control Systems & Renewable Energy (ICFCR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Futuristic Technologies in Control Systems & Renewable Energy (ICFCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFCR50903.2020.9249964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heat integrated distillation column (HIDC), one of the most advantageous energy saving technique for separation of two liquids with distinct boiling point. The dynamic and nonlinear nature of distillation column make it a challenging problem for control engineers. Artificial neural network (ANN) is used for the nonlinear identification of HIDC. The nonlinear autoregressive network with exogenous input (NARX) model is also created to map the dynamic nature. Chemical process simulator Aspen HYSYS software is used to obtain realistic model of column and also for data sets. The mole fraction of top composition (benzene) and mole fraction of bottom composition (toluene) are taken as output variables, reflux rate and tray15 temperature are the input variables. Of 2000 samples collected from HYSIS, 1500 samples used for training the network and remaining for validation of the model. This will guarantee accuracy and robustness. The performance of both (back propagation) BP-ANN and NARX-BP-ANN are compared. The regression coefficient and root mean square error (rmse) of models with 12 different algorithms and different hidden layers calculated.
热集成精馏塔的神经网络识别
热集成精馏塔(HIDC)是分离两种不同沸点液体的最具节能优势的技术之一。精馏塔的动态性和非线性特性使其成为控制工程师面临的一个难题。将人工神经网络(ANN)用于HIDC的非线性辨识。建立了带有外生输入的非线性自回归网络(NARX)模型来映射系统的动态性。利用化工过程仿真软件Aspen HYSYS对化工过程进行仿真,得到了真实的柱体模型和数据集。以顶组分(苯)的摩尔分数和底组分(甲苯)的摩尔分数为输出变量,回流速率和托盘温度为输入变量。从HYSIS中收集的2000个样本中,1500个样本用于训练网络,剩下的用于验证模型。这将保证准确性和稳健性。比较了反向传播BP-ANN和NARX-BP-ANN的性能。计算了12种不同算法和不同隐藏层模型的回归系数和均方根误差(rmse)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信