CU Partition Prediction Scheme for X265 Intra Coding Using Neural Networks

Y. C. Lin, J. J. Wu, K. H. Chen
{"title":"CU Partition Prediction Scheme for X265 Intra Coding Using Neural Networks","authors":"Y. C. Lin, J. J. Wu, K. H. Chen","doi":"10.1109/CRC.2019.00049","DOIUrl":null,"url":null,"abstract":"This paper proposes an early termination algorithm that relies on a backpropagation neural network (BPNN) for predicting the decision of coding unit (CU) partition to avoid unnecessary computation and thus to accelerate HEVC intra coding process. One of the most important things for using BPNN is to discover suitable features that are profoundly correspondent to the way of making decision of CU partition and be helpful for training a model with high prediction accuracy. Block texture of CU is adopted as the input features for training data to model the HEVC behavior on CU partition. Experiment results show that it can decrease 40.78% average encoding time and increase only a little output encoded bitrate for most benchmark videos.","PeriodicalId":414946,"journal":{"name":"2019 4th International Conference on Control, Robotics and Cybernetics (CRC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Control, Robotics and Cybernetics (CRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRC.2019.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes an early termination algorithm that relies on a backpropagation neural network (BPNN) for predicting the decision of coding unit (CU) partition to avoid unnecessary computation and thus to accelerate HEVC intra coding process. One of the most important things for using BPNN is to discover suitable features that are profoundly correspondent to the way of making decision of CU partition and be helpful for training a model with high prediction accuracy. Block texture of CU is adopted as the input features for training data to model the HEVC behavior on CU partition. Experiment results show that it can decrease 40.78% average encoding time and increase only a little output encoded bitrate for most benchmark videos.
基于神经网络的X265内编码CU分区预测方案
本文提出了一种基于反向传播神经网络(BPNN)预测编码单元(CU)划分决策的早期终止算法,以避免不必要的计算,从而加快HEVC帧内编码过程。在使用bp神经网络的过程中,最重要的是发现与CU划分决策方式深度对应的特征,并有助于训练出具有较高预测精度的模型。采用CU的块纹理作为训练数据的输入特征,对CU分区上的HEVC行为进行建模。实验结果表明,对于大多数基准视频,该方法可以减少40.78%的平均编码时间,而输出编码比特率只增加了一点点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信