A new radar target classification approach based on polarimetric high range resolution

Jiang Yicheng, L. Yongtan, Yu Ping
{"title":"A new radar target classification approach based on polarimetric high range resolution","authors":"Jiang Yicheng, L. Yongtan, Yu Ping","doi":"10.1109/ICR.1996.573793","DOIUrl":null,"url":null,"abstract":"A new millimeter-wave (MMW) radar target classification approach has been proposed using polarimetric information to obtain stable amplitudes of range profiles, and neural learning to extract angle invariant features of range profiles. The means of the polarimetric processing for reducing the speckle can enhance ability to discriminate targets. Compared with conventional approaches, the subclass features obtained carry more information due to the neural learning and thus make the correctness of target classification higher. The simulation results have verified the validity of this approach.","PeriodicalId":144063,"journal":{"name":"Proceedings of International Radar Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICR.1996.573793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new millimeter-wave (MMW) radar target classification approach has been proposed using polarimetric information to obtain stable amplitudes of range profiles, and neural learning to extract angle invariant features of range profiles. The means of the polarimetric processing for reducing the speckle can enhance ability to discriminate targets. Compared with conventional approaches, the subclass features obtained carry more information due to the neural learning and thus make the correctness of target classification higher. The simulation results have verified the validity of this approach.
基于偏振高距离分辨率的雷达目标分类新方法
提出了一种新的毫米波(MMW)雷达目标分类方法,利用偏振信息获取距离像的稳定幅值,利用神经学习提取距离像的角度不变特征。采用极化处理的方法来减少散斑,可以提高对目标的识别能力。与传统方法相比,由于神经学习,获得的子类特征携带了更多的信息,从而提高了目标分类的正确性。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信