Incorporating learning in motion planning techniques

L. Gambardella, M. Haex
{"title":"Incorporating learning in motion planning techniques","authors":"L. Gambardella, M. Haex","doi":"10.1109/IROS.1993.583141","DOIUrl":null,"url":null,"abstract":"Robot motion planning in a cluttered environment requires knowledge about robot shape and size. These robot characteristics influence system performance even though most motion planning methods do not consider them. This paper presents an ongoing study of general motion planning techniques in combination with knowledge related to robot shape and size. The system acquires knowledge and learns strategies to avoid local collisions and to make global decisions. A neural network is presented that learns local behavior and a learning technique based on a reinforcement method is presented to overcome problems of local minimum.","PeriodicalId":299306,"journal":{"name":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1993.583141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Robot motion planning in a cluttered environment requires knowledge about robot shape and size. These robot characteristics influence system performance even though most motion planning methods do not consider them. This paper presents an ongoing study of general motion planning techniques in combination with knowledge related to robot shape and size. The system acquires knowledge and learns strategies to avoid local collisions and to make global decisions. A neural network is presented that learns local behavior and a learning technique based on a reinforcement method is presented to overcome problems of local minimum.
结合学习运动规划技术
机器人在混乱环境中的运动规划需要了解机器人的形状和大小。这些机器人特性会影响系统性能,尽管大多数运动规划方法没有考虑它们。本文提出了一项正在进行的一般运动规划技术的研究,结合了与机器人形状和尺寸相关的知识。系统获取知识并学习策略以避免局部碰撞并做出全局决策。提出了一种学习局部行为的神经网络,并提出了一种基于强化方法的学习技术来克服局部最小值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信