A fast division algorithm for VLSI

N. Burgess
{"title":"A fast division algorithm for VLSI","authors":"N. Burgess","doi":"10.1109/ICCD.1991.139973","DOIUrl":null,"url":null,"abstract":"A novel and fast method for VLSI division is presented. The method is based on Svoboda's algorithm and uses the radix-2 signed-digit number system to give a divider in which quotient bit selection is a function of the two most significant digits of the current partial remainder. An n-bit divider produces an n-bit quotient in redundant form in 3n gate delays using n(n-1) controlled full add/subtract circuits. Operand pre-scaling necessary for the algorithm is accomplished by a single subtraction.<<ETX>>","PeriodicalId":239827,"journal":{"name":"[1991 Proceedings] IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1991.139973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

A novel and fast method for VLSI division is presented. The method is based on Svoboda's algorithm and uses the radix-2 signed-digit number system to give a divider in which quotient bit selection is a function of the two most significant digits of the current partial remainder. An n-bit divider produces an n-bit quotient in redundant form in 3n gate delays using n(n-1) controlled full add/subtract circuits. Operand pre-scaling necessary for the algorithm is accomplished by a single subtraction.<>
VLSI快速除法算法
提出了一种新的快速VLSI分割方法。该方法基于Svoboda算法,并使用基数-2符号数系统给出除法,其中商位选择是当前部分余数的两位最高有效数字的函数。一个n位分频器使用n(n-1)控制的全加/减电路在3n门延迟中产生冗余形式的n位商。该算法所需的操作数预缩放通过一次减法完成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信