Sentiment classification by a hybrid method of greedy search and multinomial naïve bayes algorithm

N. Chirawichitchai
{"title":"Sentiment classification by a hybrid method of greedy search and multinomial naïve bayes algorithm","authors":"N. Chirawichitchai","doi":"10.1109/ICTKE.2013.6756285","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed sentiment classification framework focusing on the hybrid method of greedy and multinomial naive bayes algorithm. We found greedy search feature selection most effective in our experiments with multinomial naive bayes algorithm. We also discovered that the multinomial naive bayes is suitable for combination with the greedy method. The hybrid method of greedy and multinomial naive bayes algorithm yielded the best performance with the accuracy over all traditional algorithms. Based on our experiments, the multinomial naive bayes algorithm with the greedy search feature selection yielded the best performance with the accuracy of 85.00 %. Our experimental results also reveal that hybrid methods have a positive effect on sentiment classification framework.","PeriodicalId":122281,"journal":{"name":"2013 Eleventh International Conference on ICT and Knowledge Engineering","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Eleventh International Conference on ICT and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTKE.2013.6756285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we proposed sentiment classification framework focusing on the hybrid method of greedy and multinomial naive bayes algorithm. We found greedy search feature selection most effective in our experiments with multinomial naive bayes algorithm. We also discovered that the multinomial naive bayes is suitable for combination with the greedy method. The hybrid method of greedy and multinomial naive bayes algorithm yielded the best performance with the accuracy over all traditional algorithms. Based on our experiments, the multinomial naive bayes algorithm with the greedy search feature selection yielded the best performance with the accuracy of 85.00 %. Our experimental results also reveal that hybrid methods have a positive effect on sentiment classification framework.
一种贪婪搜索与多项贝叶斯算法混合的情感分类方法naïve
本文提出了一种基于贪婪和多项朴素贝叶斯算法混合方法的情感分类框架。在多项朴素贝叶斯算法的实验中,我们发现贪婪搜索特征选择是最有效的。我们还发现多项朴素贝叶斯适合与贪心方法相结合。其中,贪心与多项朴素贝叶斯算法的混合方法在准确率上优于所有传统算法。实验结果表明,采用贪婪搜索特征选择的多项朴素贝叶斯算法的准确率为85.00%,取得了较好的效果。我们的实验结果也表明,混合方法对情感分类框架有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信