{"title":"Design and fabrication of an electrostatically actuated MEMS probe card","authors":"K. Shingo, K. Kataoka, T. Itoh, T. Suga","doi":"10.1109/SENSOR.2003.1217067","DOIUrl":null,"url":null,"abstract":"We have designed and fabricated a new type of MEMS probe card consisting of electrostatically-driven microprobes, which can be used for a next generation wafer probe card with the fritting-contact method. MEMS probe cards are requisite to higher pad-density and smaller pad-pitch chips, and are effective in high frequency testing. If a probe card consists of an array of actuator-integrated microprobes, it has some further advantages. Since the deflection of each probe can individually be controlled, probe-pad contact force can be uniform by compensating the probe-pad distance deviation with probe deflection. Furthermore, since contacts can directly be switched on and off, it could be suitable for a wafer-level test/burn-in probe card. To obtain a design guideline of actuator-integrated probes, we investigated the characteristics of fritting contact between electroplated Ni probes and Al electrodes. As a result, it has been found that both the contact and disconnection forces of Ni probes in fritting contact process could be as small as 10 /spl mu/N. We proposed a MEMS probe card that is composed of an array of Ni microcantilevers with a rolling-contact touch-mode electrostatic actuator and developed a micromachining process which includes electroplating deposition of two layers having different internal stress and etching of Cu sacrifice layer.","PeriodicalId":196104,"journal":{"name":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2003.1217067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We have designed and fabricated a new type of MEMS probe card consisting of electrostatically-driven microprobes, which can be used for a next generation wafer probe card with the fritting-contact method. MEMS probe cards are requisite to higher pad-density and smaller pad-pitch chips, and are effective in high frequency testing. If a probe card consists of an array of actuator-integrated microprobes, it has some further advantages. Since the deflection of each probe can individually be controlled, probe-pad contact force can be uniform by compensating the probe-pad distance deviation with probe deflection. Furthermore, since contacts can directly be switched on and off, it could be suitable for a wafer-level test/burn-in probe card. To obtain a design guideline of actuator-integrated probes, we investigated the characteristics of fritting contact between electroplated Ni probes and Al electrodes. As a result, it has been found that both the contact and disconnection forces of Ni probes in fritting contact process could be as small as 10 /spl mu/N. We proposed a MEMS probe card that is composed of an array of Ni microcantilevers with a rolling-contact touch-mode electrostatic actuator and developed a micromachining process which includes electroplating deposition of two layers having different internal stress and etching of Cu sacrifice layer.