Design and fabrication of an electrostatically actuated MEMS probe card

K. Shingo, K. Kataoka, T. Itoh, T. Suga
{"title":"Design and fabrication of an electrostatically actuated MEMS probe card","authors":"K. Shingo, K. Kataoka, T. Itoh, T. Suga","doi":"10.1109/SENSOR.2003.1217067","DOIUrl":null,"url":null,"abstract":"We have designed and fabricated a new type of MEMS probe card consisting of electrostatically-driven microprobes, which can be used for a next generation wafer probe card with the fritting-contact method. MEMS probe cards are requisite to higher pad-density and smaller pad-pitch chips, and are effective in high frequency testing. If a probe card consists of an array of actuator-integrated microprobes, it has some further advantages. Since the deflection of each probe can individually be controlled, probe-pad contact force can be uniform by compensating the probe-pad distance deviation with probe deflection. Furthermore, since contacts can directly be switched on and off, it could be suitable for a wafer-level test/burn-in probe card. To obtain a design guideline of actuator-integrated probes, we investigated the characteristics of fritting contact between electroplated Ni probes and Al electrodes. As a result, it has been found that both the contact and disconnection forces of Ni probes in fritting contact process could be as small as 10 /spl mu/N. We proposed a MEMS probe card that is composed of an array of Ni microcantilevers with a rolling-contact touch-mode electrostatic actuator and developed a micromachining process which includes electroplating deposition of two layers having different internal stress and etching of Cu sacrifice layer.","PeriodicalId":196104,"journal":{"name":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2003.1217067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We have designed and fabricated a new type of MEMS probe card consisting of electrostatically-driven microprobes, which can be used for a next generation wafer probe card with the fritting-contact method. MEMS probe cards are requisite to higher pad-density and smaller pad-pitch chips, and are effective in high frequency testing. If a probe card consists of an array of actuator-integrated microprobes, it has some further advantages. Since the deflection of each probe can individually be controlled, probe-pad contact force can be uniform by compensating the probe-pad distance deviation with probe deflection. Furthermore, since contacts can directly be switched on and off, it could be suitable for a wafer-level test/burn-in probe card. To obtain a design guideline of actuator-integrated probes, we investigated the characteristics of fritting contact between electroplated Ni probes and Al electrodes. As a result, it has been found that both the contact and disconnection forces of Ni probes in fritting contact process could be as small as 10 /spl mu/N. We proposed a MEMS probe card that is composed of an array of Ni microcantilevers with a rolling-contact touch-mode electrostatic actuator and developed a micromachining process which includes electroplating deposition of two layers having different internal stress and etching of Cu sacrifice layer.
静电驱动MEMS探针卡的设计与制造
我们设计并制作了一种由静电驱动微探针组成的新型MEMS探针卡,可用于新一代微晶圆探针卡。MEMS探针卡是高垫密度和小垫距芯片所必需的,并且在高频测试中是有效的。如果一个探针卡由一组集成了驱动器的微探针组成,它还有一些进一步的优势。由于每个探头的挠度可以单独控制,通过用探头挠度补偿探头-垫距离偏差,可以使探头-垫接触力均匀。此外,由于触点可以直接接通和关闭,因此它可能适用于晶圆级测试/烧坏探针卡。为了获得执行器集成探针的设计准则,我们研究了镀镍探针与铝电极之间的摩擦接触特性。结果表明,在摩擦接触过程中,Ni探针的接触力和断开力均可小至10 /spl mu/N。提出了一种由Ni微悬臂阵列和滚动接触式静电致动器组成的MEMS探针卡,并开发了一种微加工工艺,包括两层不同内应力的电镀沉积和Cu牺牲层的蚀刻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信