{"title":"Regularity of Strain Distribution in Short-Fiber/Whisker Reinforced Composites","authors":"Xiaoyu Liu, Wei Wu, N. Liang","doi":"10.2472/JSMS.51.12APPENDIX_219","DOIUrl":null,"url":null,"abstract":"Based on studies on the strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter, λ is defined as a ratio of root-mean-square strain of the reinforcers identically oriented to the macro-linear strain along the same direction. Quantitative relation between X and microstructure parameters of composites is obtained. By using X, the stiffness moduli of composites with arbitrary reinforcer orientation density function and under arbitrary loading condition are derived. The upper-bound and lower-bound of the present prediction are the same as those from the equal-strain theory and equal-stress theory, respectively. The present theory provides a physical explanation and theoretical base for the present commonly-used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for stiffness modulus prediction of practical engineering composites in accuracy and simplicity.","PeriodicalId":377759,"journal":{"name":"Materials Science Research International","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2472/JSMS.51.12APPENDIX_219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Based on studies on the strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter, λ is defined as a ratio of root-mean-square strain of the reinforcers identically oriented to the macro-linear strain along the same direction. Quantitative relation between X and microstructure parameters of composites is obtained. By using X, the stiffness moduli of composites with arbitrary reinforcer orientation density function and under arbitrary loading condition are derived. The upper-bound and lower-bound of the present prediction are the same as those from the equal-strain theory and equal-stress theory, respectively. The present theory provides a physical explanation and theoretical base for the present commonly-used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for stiffness modulus prediction of practical engineering composites in accuracy and simplicity.