Neural network based on parametrically-pumped oscillators

G. Csaba, T. Ytterdal, W. Porod
{"title":"Neural network based on parametrically-pumped oscillators","authors":"G. Csaba, T. Ytterdal, W. Porod","doi":"10.1109/ICECS.2016.7841128","DOIUrl":null,"url":null,"abstract":"We demonstrate that sub-harmonic injection locked oscillators (SHILOs) can serve as building blocks of neural networks. After numerically studying the locking properties of injection-locked ring-oscillator models, we show that resistively or capacitively interconnected networks of such oscillators fall into well-defined ground states, which ground states, in turn, depend on the strength of interconnections. We argue that these networks may serve as efficient hardware implementations for emerging neural network-based processing devices.","PeriodicalId":205556,"journal":{"name":"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2016.7841128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We demonstrate that sub-harmonic injection locked oscillators (SHILOs) can serve as building blocks of neural networks. After numerically studying the locking properties of injection-locked ring-oscillator models, we show that resistively or capacitively interconnected networks of such oscillators fall into well-defined ground states, which ground states, in turn, depend on the strength of interconnections. We argue that these networks may serve as efficient hardware implementations for emerging neural network-based processing devices.
基于参数抽运振荡器的神经网络
我们证明了次谐波注入锁定振荡器(SHILOs)可以作为神经网络的构建模块。在数值研究了注入锁定环振模型的锁定特性后,我们表明这种振子的电阻性或电容性互连网络落入定义良好的基态,这些基态反过来取决于互连的强度。我们认为这些网络可以作为新兴的基于神经网络的处理设备的有效硬件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信