Frequency-resolved optical gating at 1.5 μm using the Kerr nonlinearity in optical fibres

M. Thomson, J. Dudley, L. Barry, J. Harvey
{"title":"Frequency-resolved optical gating at 1.5 μm using the Kerr nonlinearity in optical fibres","authors":"M. Thomson, J. Dudley, L. Barry, J. Harvey","doi":"10.1364/nlgw.1998.pd.3","DOIUrl":null,"url":null,"abstract":"Frequency-resolved optical gating (FROG) is rapidly becoming a routine measurement technique for the characterisation of ultrashort light pulses, and a number of different experimental schemes based on nonlinear processes in bulk materials have been demonstrated [1]. As the use of FROG becomes more widespread, there will be increasing demand for additional convenient geometries for particular experimental applications. In this paper, we use the Kerr nonlinearity in 20 m of dispersion-shifted fibre as the nonlinear process for a novel Fibre-FROG geometry, and characterise the intensity and phase of picosecond pulses around 1.5 μm. The results are found to be in excellent agreement with results obtained using a standard second-harmonic generation (SHG) FROG technique.","PeriodicalId":262564,"journal":{"name":"Nonlinear Guided Waves and Their Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Guided Waves and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/nlgw.1998.pd.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Frequency-resolved optical gating (FROG) is rapidly becoming a routine measurement technique for the characterisation of ultrashort light pulses, and a number of different experimental schemes based on nonlinear processes in bulk materials have been demonstrated [1]. As the use of FROG becomes more widespread, there will be increasing demand for additional convenient geometries for particular experimental applications. In this paper, we use the Kerr nonlinearity in 20 m of dispersion-shifted fibre as the nonlinear process for a novel Fibre-FROG geometry, and characterise the intensity and phase of picosecond pulses around 1.5 μm. The results are found to be in excellent agreement with results obtained using a standard second-harmonic generation (SHG) FROG technique.
利用光纤中的克尔非线性实现1.5 μm的频率分辨光门控
频率分辨光门控(FROG)正迅速成为表征超短光脉冲的常规测量技术,并且已经证明了许多基于块状材料非线性过程的不同实验方案[1]。随着FROG的使用越来越广泛,对于特殊实验应用的额外方便几何形状的需求将会增加。在本文中,我们利用20 m色散位移光纤中的Kerr非线性作为一种新型光纤frog几何结构的非线性过程,并表征了1.5 μm左右皮秒脉冲的强度和相位。结果发现与使用标准二次谐波发生(SHG) FROG技术得到的结果非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信