The Atomic Layer Deposition Technique for the Fabrication of Memristive Devices: Impact of the Precursor on Pre-deposited Stack Materials

C. Quinteros, A. Hardtdegen, M. Barella, Federico Golmar, Félix Palumbo, J. Curiale, S. Hoffmann‐Eifert, Pablo Levy
{"title":"The Atomic Layer Deposition Technique for the Fabrication of Memristive Devices: Impact of the Precursor on Pre-deposited Stack Materials","authors":"C. Quinteros, A. Hardtdegen, M. Barella, Federico Golmar, Félix Palumbo, J. Curiale, S. Hoffmann‐Eifert, Pablo Levy","doi":"10.5772/INTECHOPEN.78937","DOIUrl":null,"url":null,"abstract":"Atomic layer deposition (ALD) is a standard technique employed to grow thin-film oxides for a variety of applications. We describe the technique and demonstrate its use for obtaining memristive devices. The metal/insulator/metal stack is fabricated by means of ALD-grown HfO2, deposited on top of a highly doped Si substrate with an SiO2 film and a Ti electrode. Enhanced device capabilities (forming free, self-limiting current, non-crossing hysteretic current-voltage features) are presented and discussed. Careful analysis of the stack structure by means of X-ray reflectometry, atomic force microscopy, and secondary ion mass spectroscopy revealed a modification of the device stack from the intended sequence, HfO2/Ti/SiO2/Si. Analytical studies unravel an oxidation of the Ti layer which is addressed for the use of the ozone precursor in the HfO2 ALD process. A new deposition process and the model deduced from impedance measurements support our hypothesis: the role played by ozone on the previously deposited Ti layer is found to determine the overall features of the device. Besides, these ALD-tailored multifunctional devices exhibit rectification capability and long enough retention time to deserve their use as memory cells in a crossbar architecture and multibit approach, envisaging other potential applications.","PeriodicalId":246449,"journal":{"name":"New Uses of Micro and Nanomaterials","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Uses of Micro and Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.78937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Atomic layer deposition (ALD) is a standard technique employed to grow thin-film oxides for a variety of applications. We describe the technique and demonstrate its use for obtaining memristive devices. The metal/insulator/metal stack is fabricated by means of ALD-grown HfO2, deposited on top of a highly doped Si substrate with an SiO2 film and a Ti electrode. Enhanced device capabilities (forming free, self-limiting current, non-crossing hysteretic current-voltage features) are presented and discussed. Careful analysis of the stack structure by means of X-ray reflectometry, atomic force microscopy, and secondary ion mass spectroscopy revealed a modification of the device stack from the intended sequence, HfO2/Ti/SiO2/Si. Analytical studies unravel an oxidation of the Ti layer which is addressed for the use of the ozone precursor in the HfO2 ALD process. A new deposition process and the model deduced from impedance measurements support our hypothesis: the role played by ozone on the previously deposited Ti layer is found to determine the overall features of the device. Besides, these ALD-tailored multifunctional devices exhibit rectification capability and long enough retention time to deserve their use as memory cells in a crossbar architecture and multibit approach, envisaging other potential applications.
制备记忆器件的原子层沉积技术:前驱体对预沉积堆叠材料的影响
原子层沉积(ALD)是一种标准的技术,用于生长薄膜氧化物的各种应用。我们描述了该技术并演示了其用于获得记忆器件的用途。金属/绝缘体/金属堆是通过ald生长的HfO2制成的,沉积在高掺杂的Si衬底上,上面有SiO2薄膜和Ti电极。提出并讨论了增强的器件性能(形成自由、自限电流、不交叉迟滞电流-电压特性)。通过x射线反射仪、原子力显微镜和二次离子质谱对堆叠结构进行仔细分析,发现器件堆叠从预期序列HfO2/Ti/SiO2/Si进行了修改。分析研究揭示了在HfO2 ALD工艺中使用臭氧前驱体的Ti层氧化。一个新的沉积过程和从阻抗测量中推导出的模型支持了我们的假设:发现臭氧在先前沉积的Ti层上所起的作用决定了器件的整体特征。此外,这些定制的ald多功能器件具有整流能力和足够长的保留时间,值得在交叉条架构和多比特方法中用作存储单元,并设想其他潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信