Behavioral modeling by Volterra series and time-delay neural network approach

Jelena Misic, V. Markovic, Z. Marinković
{"title":"Behavioral modeling by Volterra series and time-delay neural network approach","authors":"Jelena Misic, V. Markovic, Z. Marinković","doi":"10.1109/NEUREL.2014.7011456","DOIUrl":null,"url":null,"abstract":"Solving the non-linear distortion problems in wireless communications is often based on developing the behavioral models of non-linear components. In this paper, a non-linear Volterra model up to third order is developed by using an artificial neural network (ANN) approach. The Volterra kernels are derived from the parameters of a feed-forward time delay neural network with a suitable activation function. The Volterra model is implemented to represent the behavior of a low noise amplifier for LTE receiver.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"39 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solving the non-linear distortion problems in wireless communications is often based on developing the behavioral models of non-linear components. In this paper, a non-linear Volterra model up to third order is developed by using an artificial neural network (ANN) approach. The Volterra kernels are derived from the parameters of a feed-forward time delay neural network with a suitable activation function. The Volterra model is implemented to represent the behavior of a low noise amplifier for LTE receiver.
基于Volterra级数和时滞神经网络方法的行为建模
解决无线通信中的非线性失真问题往往需要建立非线性元件的行为模型。本文采用人工神经网络(ANN)方法建立了三阶非线性Volterra模型。Volterra核是由具有合适激活函数的前馈时滞神经网络的参数导出的。采用Volterra模型来表示LTE接收机的低噪声放大器的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信