{"title":"Learning Rotation Sensitive Neural Network for Deformed Objects' Detection in Fisheye Images","authors":"Zhen Chen, A. Georgiadis","doi":"10.1109/ICRAE48301.2019.9043800","DOIUrl":null,"url":null,"abstract":"Object detection plays a significant role in an intelligent system equipped with a fisheye camera. The fisheye image captures a wide field-of-view but deforms in the radial direction. The deformation changes the relative angle between the edge of objects and the image. Therefore, a horizontal bounding box cannot perform an accurate description of an object's location and dimension in advanced neural network training. In this paper, we build a rotation sensitive neural network targeting to realize one-stage regression on the fisheye image detection. The oriented bounding box is applied in the object's description and detection. To evaluate our proposed method, we develop a new labelled fisheye image dataset that contains two categories. The network model training takes around 3 hours and achieves 100% precious by the test set.","PeriodicalId":270665,"journal":{"name":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"194 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE48301.2019.9043800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Object detection plays a significant role in an intelligent system equipped with a fisheye camera. The fisheye image captures a wide field-of-view but deforms in the radial direction. The deformation changes the relative angle between the edge of objects and the image. Therefore, a horizontal bounding box cannot perform an accurate description of an object's location and dimension in advanced neural network training. In this paper, we build a rotation sensitive neural network targeting to realize one-stage regression on the fisheye image detection. The oriented bounding box is applied in the object's description and detection. To evaluate our proposed method, we develop a new labelled fisheye image dataset that contains two categories. The network model training takes around 3 hours and achieves 100% precious by the test set.