Learning Rotation Sensitive Neural Network for Deformed Objects' Detection in Fisheye Images

Zhen Chen, A. Georgiadis
{"title":"Learning Rotation Sensitive Neural Network for Deformed Objects' Detection in Fisheye Images","authors":"Zhen Chen, A. Georgiadis","doi":"10.1109/ICRAE48301.2019.9043800","DOIUrl":null,"url":null,"abstract":"Object detection plays a significant role in an intelligent system equipped with a fisheye camera. The fisheye image captures a wide field-of-view but deforms in the radial direction. The deformation changes the relative angle between the edge of objects and the image. Therefore, a horizontal bounding box cannot perform an accurate description of an object's location and dimension in advanced neural network training. In this paper, we build a rotation sensitive neural network targeting to realize one-stage regression on the fisheye image detection. The oriented bounding box is applied in the object's description and detection. To evaluate our proposed method, we develop a new labelled fisheye image dataset that contains two categories. The network model training takes around 3 hours and achieves 100% precious by the test set.","PeriodicalId":270665,"journal":{"name":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"194 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE48301.2019.9043800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection plays a significant role in an intelligent system equipped with a fisheye camera. The fisheye image captures a wide field-of-view but deforms in the radial direction. The deformation changes the relative angle between the edge of objects and the image. Therefore, a horizontal bounding box cannot perform an accurate description of an object's location and dimension in advanced neural network training. In this paper, we build a rotation sensitive neural network targeting to realize one-stage regression on the fisheye image detection. The oriented bounding box is applied in the object's description and detection. To evaluate our proposed method, we develop a new labelled fisheye image dataset that contains two categories. The network model training takes around 3 hours and achieves 100% precious by the test set.
学习旋转敏感神经网络在鱼眼图像变形物体检测中的应用
在配备鱼眼相机的智能系统中,目标检测起着至关重要的作用。鱼眼图像捕获了宽视场,但在径向方向上变形。这种变形改变了物体边缘与图像之间的相对角度。因此,在高级神经网络训练中,水平边界框无法准确描述目标的位置和尺寸。本文建立了一个旋转敏感神经网络目标,实现了对鱼眼图像检测的一期回归。将定向边界框应用于物体的描述和检测。为了评估我们提出的方法,我们开发了一个新的标记鱼眼图像数据集,其中包含两个类别。网络模型的训练大约需要3个小时,测试集的准确率达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信