Hyperspectral image classification using wavelet packet analysis and gray prediction model

Jihao Yin, Chaoqun Gao, Yifei Wang, Yisong Wang
{"title":"Hyperspectral image classification using wavelet packet analysis and gray prediction model","authors":"Jihao Yin, Chaoqun Gao, Yifei Wang, Yisong Wang","doi":"10.1109/IASP.2010.5476105","DOIUrl":null,"url":null,"abstract":"The main focus of hyperspectral image classification is the ability to extract information from a pixel's hyperspectral curve. In this paper, we propose a new classification method based on wavelet packet analysis and gray prediction model of hyperspectral reflectance curves. The wavelet packet analysis is used for feature extraction, while the gray prediction model is applied for dimensionality reduction. The efficiency of the proposed method will be estimated by the multivariate statistical analysis (i.e. Mahalanobis distance and quantile). Experimental results indicate that our algorithm has a relatively high efficiency, and classification accuracy of 99.3%.","PeriodicalId":223866,"journal":{"name":"2010 International Conference on Image Analysis and Signal Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2010.5476105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The main focus of hyperspectral image classification is the ability to extract information from a pixel's hyperspectral curve. In this paper, we propose a new classification method based on wavelet packet analysis and gray prediction model of hyperspectral reflectance curves. The wavelet packet analysis is used for feature extraction, while the gray prediction model is applied for dimensionality reduction. The efficiency of the proposed method will be estimated by the multivariate statistical analysis (i.e. Mahalanobis distance and quantile). Experimental results indicate that our algorithm has a relatively high efficiency, and classification accuracy of 99.3%.
基于小波包分析和灰色预测模型的高光谱图像分类
高光谱图像分类的主要焦点是从像素的高光谱曲线中提取信息的能力。本文提出了一种基于小波包分析和高光谱反射率曲线灰色预测模型的分类方法。采用小波包分析进行特征提取,采用灰色预测模型进行降维。该方法的有效性将通过多元统计分析(即马氏距离和分位数)来评估。实验结果表明,该算法具有较高的分类效率,分类准确率达到99.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信