O. Schmitz, S. Hampel, K. Mertens, M. Tiebout, I. Rolfes
{"title":"A highly linear, differential gyrator in 65nm CMOS for reconfigurable GHz applications","authors":"O. Schmitz, S. Hampel, K. Mertens, M. Tiebout, I. Rolfes","doi":"10.1109/ESSCIRC.2009.5326031","DOIUrl":null,"url":null,"abstract":"This work presents the design, implementation and measurement results of a novel, gyrator-based active inductor circuit in a 1.2 V 65nm CMOS technology. By solely employing stacked nMOS-pMOS transistor combinations, the proposed differential gyrator achieves a maximal self-resonance frequency of approximately 18 GHz and features high linearity with a current consumption of only 6 mA, therefore representing an attractive candidate for radio-frequency applications. The proposed active inductor is combined with additional circuitry and switchable capacitors in order to form an inductorless, reconfigurable RF amplifier. The comparison of measurement and simulation data in terms of scattering parameters and output referred compression verifies the active inductor's functionality.","PeriodicalId":258889,"journal":{"name":"2009 Proceedings of ESSCIRC","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Proceedings of ESSCIRC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2009.5326031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This work presents the design, implementation and measurement results of a novel, gyrator-based active inductor circuit in a 1.2 V 65nm CMOS technology. By solely employing stacked nMOS-pMOS transistor combinations, the proposed differential gyrator achieves a maximal self-resonance frequency of approximately 18 GHz and features high linearity with a current consumption of only 6 mA, therefore representing an attractive candidate for radio-frequency applications. The proposed active inductor is combined with additional circuitry and switchable capacitors in order to form an inductorless, reconfigurable RF amplifier. The comparison of measurement and simulation data in terms of scattering parameters and output referred compression verifies the active inductor's functionality.