Analyzing of Political Tweets in Hindi Language Using Machine Learning and Deep Learning

Tarun Jain, S. Mathur, A. Ninnad, Bikkumalla Nikshep, Namita Chalil
{"title":"Analyzing of Political Tweets in Hindi Language Using Machine Learning and Deep Learning","authors":"Tarun Jain, S. Mathur, A. Ninnad, Bikkumalla Nikshep, Namita Chalil","doi":"10.1109/ICDSIS55133.2022.9915864","DOIUrl":null,"url":null,"abstract":"Sentiment Analysis is a natural language processing task where we identify and categorize opinions based on piece of text. It is the mostly used when determining the sentiment of a text including product reviews, movies and so on. In this paper, we will first identify the text with positive, negative and neutral sentiment polarities from the dataset which obtained using tweepy. It is a library for accessing the twitter Api. The text pieces are in Hindi language and we will pre-process the data and train the dataset and apply various machine learning classifiers K-Nearest Neighbors(KNN), Decision Tree, Support Vector Machine(SVM) and also apply deep learning classifier Long short term memory model(LSTM) and get the performance of the model for the dataset.","PeriodicalId":178360,"journal":{"name":"2022 IEEE International Conference on Data Science and Information System (ICDSIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Science and Information System (ICDSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSIS55133.2022.9915864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sentiment Analysis is a natural language processing task where we identify and categorize opinions based on piece of text. It is the mostly used when determining the sentiment of a text including product reviews, movies and so on. In this paper, we will first identify the text with positive, negative and neutral sentiment polarities from the dataset which obtained using tweepy. It is a library for accessing the twitter Api. The text pieces are in Hindi language and we will pre-process the data and train the dataset and apply various machine learning classifiers K-Nearest Neighbors(KNN), Decision Tree, Support Vector Machine(SVM) and also apply deep learning classifier Long short term memory model(LSTM) and get the performance of the model for the dataset.
用机器学习和深度学习分析印度语的政治推文
情感分析是一项自然语言处理任务,我们根据文本片段识别和分类意见。它主要用于确定文本的情绪,包括产品评论,电影等。在本文中,我们将首先从使用tweepy获得的数据集中识别具有积极,消极和中性情绪极性的文本。它是一个用于访问twitter Api的库。文本片段是印地语,我们将对数据进行预处理和训练数据集,并应用各种机器学习分类器k -最近邻(KNN),决策树,支持向量机(SVM),还应用深度学习分类器长短期记忆模型(LSTM)并获得数据集模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信