Effective sensor positioning to localize target transmitters in a Cognitive Radio Network

Audri Biswas, S. Reisenfeld, M. Hedley, Zhuo Chen
{"title":"Effective sensor positioning to localize target transmitters in a Cognitive Radio Network","authors":"Audri Biswas, S. Reisenfeld, M. Hedley, Zhuo Chen","doi":"10.4108/eai.5-4-2016.151145","DOIUrl":null,"url":null,"abstract":"A precise positioning of transmitting nodes enhances the performance of Cognitive Radio (CR), by enabling more efficient dynamic allocation of channels and transmit powers for unlicensed users. Most localization techniques rely on random positioning of sensor nodes where, few sensor nodes may have a small separation between adjacent nodes. Closely spaced nodes introduces correlated observations, effecting the performance of Compressive Sensing (CS) algorithm. This paper introduces a novel minimum distance separation aided compressive sensing algorithm (MDACS). The algorithm selectively eliminates Secondary User (SU) power observations from the set of SU receiving terminals such that pairs of the remaining SUs are separated by a minimum geographic distance. We have evaluated the detection of multiple sparse targets locations and error in l2-norm of the recovery vector. The proposed method offers an improvement in detection ratio by 20% while reducing the error in l2-norm by 57%. Received on 19 June, 2015; accepted on 26 November, 2015; published on 05 April, 2016","PeriodicalId":334012,"journal":{"name":"EAI Endorsed Trans. Cogn. Commun.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Cogn. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.5-4-2016.151145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A precise positioning of transmitting nodes enhances the performance of Cognitive Radio (CR), by enabling more efficient dynamic allocation of channels and transmit powers for unlicensed users. Most localization techniques rely on random positioning of sensor nodes where, few sensor nodes may have a small separation between adjacent nodes. Closely spaced nodes introduces correlated observations, effecting the performance of Compressive Sensing (CS) algorithm. This paper introduces a novel minimum distance separation aided compressive sensing algorithm (MDACS). The algorithm selectively eliminates Secondary User (SU) power observations from the set of SU receiving terminals such that pairs of the remaining SUs are separated by a minimum geographic distance. We have evaluated the detection of multiple sparse targets locations and error in l2-norm of the recovery vector. The proposed method offers an improvement in detection ratio by 20% while reducing the error in l2-norm by 57%. Received on 19 June, 2015; accepted on 26 November, 2015; published on 05 April, 2016
认知无线电网络中有效传感器定位目标发射机
发射节点的精确定位增强了认知无线电(CR)的性能,为未授权用户实现更有效的信道和发射功率的动态分配。大多数定位技术依赖于传感器节点的随机定位,其中很少有传感器节点在相邻节点之间有很小的间隔。节点间距过密会引入相关观测值,影响压缩感知算法的性能。提出了一种新的最小距离分离辅助压缩感知算法(MDACS)。该算法有选择地从一组SU接收终端中剔除次要用户(Secondary User, SU)的功率观测值,从而使剩余的SU对之间保持最小的地理距离。我们评估了多个稀疏目标的检测位置和恢复向量的12范数误差。该方法的检出率提高了20%,12范数误差降低了57%。2015年6月19日收到;2015年11月26日录用;发布于2016年4月5日
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信