Translating Between the Roots of the Identity in Quantum Computers

W. Castryck, J. Demeyer, A. Vos, Oliver Keszöcze, Mathias Soeken
{"title":"Translating Between the Roots of the Identity in Quantum Computers","authors":"W. Castryck, J. Demeyer, A. Vos, Oliver Keszöcze, Mathias Soeken","doi":"10.1109/ISMVL.2018.00051","DOIUrl":null,"url":null,"abstract":"The Clifford+T quantum computing gate library for single qubit gates can create all unitary matrices that are generated by the group H, T. The matrix T can be considered the fourth root of Pauli Z, since T4 = Z or also the eighth root of the identity I. The Hadamard matrix H can be used to translate between the Pauli matrices, since (HTH)4 gives Pauli X. We are generalizing both these roots of the Pauli matrices (or roots of the identity) and translation matrices to investigate the groups they generate: the so-called Pauli root groups. In this work we introduce a formalization of such groups, study finiteness and infiniteness properties, and precisely determine equality and subgroup relations.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Clifford+T quantum computing gate library for single qubit gates can create all unitary matrices that are generated by the group H, T. The matrix T can be considered the fourth root of Pauli Z, since T4 = Z or also the eighth root of the identity I. The Hadamard matrix H can be used to translate between the Pauli matrices, since (HTH)4 gives Pauli X. We are generalizing both these roots of the Pauli matrices (or roots of the identity) and translation matrices to investigate the groups they generate: the so-called Pauli root groups. In this work we introduce a formalization of such groups, study finiteness and infiniteness properties, and precisely determine equality and subgroup relations.
量子计算机中恒等根之间的转换
单量子位门的Clifford+T量子计算门库可以创建由群H, T生成的所有酉矩阵。矩阵T可以被认为是泡利Z的四次根,因为T4 = Z,或者也是单位i的八次根。因为(HTH)4给出泡利x,我们推广泡利矩阵的这些根(或单位根)和平移矩阵来研究它们产生的群:所谓的泡利根群。在本文中,我们引入了这类群的形式化,研究了有限和无穷性质,并精确地确定了相等和子群关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信