Energy-Efficient and Context-aware Trajectory Planning for Mobile Data Collection in IoT using Deep Reinforcement Learning

Sana Benhamaid, Hicham Lakhlef, A. Bouabdallah
{"title":"Energy-Efficient and Context-aware Trajectory Planning for Mobile Data Collection in IoT using Deep Reinforcement Learning","authors":"Sana Benhamaid, Hicham Lakhlef, A. Bouabdallah","doi":"10.23919/softcom55329.2022.9911304","DOIUrl":null,"url":null,"abstract":"IoT networks are often composed of spatially distributed nodes. This is why mobile data collection (MDC) emerged as an efficient solution to gather data from IoT networks that tolerate delay. In this paper, we study the use of reinforcement learning (RL) to plan the data collection trajectory of a mobile node (MN) in cluster-based IoT networks. Most of the existing solutions use static methods. However, in a context where the MN has little information (no previous data set) about the environment and where the environment is subject to changes (cluster mobility, etc.), we want the MN to learn an energy-efficient trajectory and adapt the trajectory to the significant changes in the environment. For that purpose, we will train two reinforcement learning (RL) algorithms: Q-learning and state-action-reward-state-action (SARSA) combined with deep learning (DL). This solution will allow us to maximize the collected data while minimizing the energy consumption of the MN. These algorithms will also adapt the trajectory of the MN to the signiflcant changes in the environment.","PeriodicalId":261625,"journal":{"name":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/softcom55329.2022.9911304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

IoT networks are often composed of spatially distributed nodes. This is why mobile data collection (MDC) emerged as an efficient solution to gather data from IoT networks that tolerate delay. In this paper, we study the use of reinforcement learning (RL) to plan the data collection trajectory of a mobile node (MN) in cluster-based IoT networks. Most of the existing solutions use static methods. However, in a context where the MN has little information (no previous data set) about the environment and where the environment is subject to changes (cluster mobility, etc.), we want the MN to learn an energy-efficient trajectory and adapt the trajectory to the significant changes in the environment. For that purpose, we will train two reinforcement learning (RL) algorithms: Q-learning and state-action-reward-state-action (SARSA) combined with deep learning (DL). This solution will allow us to maximize the collected data while minimizing the energy consumption of the MN. These algorithms will also adapt the trajectory of the MN to the signiflcant changes in the environment.
基于深度强化学习的物联网移动数据收集节能和情境感知轨迹规划
物联网网络通常由空间分布的节点组成。这就是为什么移动数据收集(MDC)成为一种有效的解决方案,从容忍延迟的物联网网络收集数据。在本文中,我们研究了在基于集群的物联网网络中使用强化学习(RL)来规划移动节点(MN)的数据收集轨迹。大多数现有的解决方案都使用静态方法。然而,在MN几乎没有关于环境的信息(没有以前的数据集)以及环境会发生变化(集群移动性等)的情况下,我们希望MN学习节能轨迹并使轨迹适应环境的重大变化。为此,我们将训练两种强化学习(RL)算法:Q-learning和结合深度学习(DL)的状态-动作-奖励-状态-动作(SARSA)。此解决方案将允许我们最大化收集的数据,同时最小化MN的能耗。这些算法还将调整MN的轨迹以适应环境的重大变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信