{"title":"Learning Efficient Omni-Directional Capture Stepping for Humanoid Robots from Human Motion and Simulation Data","authors":"Johannes Pankert, Lukas Kaul, T. Asfour","doi":"10.1109/HUMANOIDS.2018.8625039","DOIUrl":null,"url":null,"abstract":"Two key questions in the context of stepping for push recovery are where to step and how to step there. In this paper we present a fast and computationally light-weight approach for capture stepping of full-sized humanoid robots. To this end, we developed an efficient parametric step motion generator based on dynamic movement primitives (DMPs) learnt from human demonstrations. Simulation-based reinforcement learning (RL) is used to find a mapping from estimated push parameters (push direction and intensity) to step parameters (step location and step execution time) that are fed to the motion generator. Successful omni-directional capture stepping for 89 % of the test cases with pushes from various directions and intensities is achieved with minimal computational effort after 500 training iterations. We evaluate our method in a dynamic simulation of the ARMAR-4 humanoid robot.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8625039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Two key questions in the context of stepping for push recovery are where to step and how to step there. In this paper we present a fast and computationally light-weight approach for capture stepping of full-sized humanoid robots. To this end, we developed an efficient parametric step motion generator based on dynamic movement primitives (DMPs) learnt from human demonstrations. Simulation-based reinforcement learning (RL) is used to find a mapping from estimated push parameters (push direction and intensity) to step parameters (step location and step execution time) that are fed to the motion generator. Successful omni-directional capture stepping for 89 % of the test cases with pushes from various directions and intensities is achieved with minimal computational effort after 500 training iterations. We evaluate our method in a dynamic simulation of the ARMAR-4 humanoid robot.