Learning Efficient Omni-Directional Capture Stepping for Humanoid Robots from Human Motion and Simulation Data

Johannes Pankert, Lukas Kaul, T. Asfour
{"title":"Learning Efficient Omni-Directional Capture Stepping for Humanoid Robots from Human Motion and Simulation Data","authors":"Johannes Pankert, Lukas Kaul, T. Asfour","doi":"10.1109/HUMANOIDS.2018.8625039","DOIUrl":null,"url":null,"abstract":"Two key questions in the context of stepping for push recovery are where to step and how to step there. In this paper we present a fast and computationally light-weight approach for capture stepping of full-sized humanoid robots. To this end, we developed an efficient parametric step motion generator based on dynamic movement primitives (DMPs) learnt from human demonstrations. Simulation-based reinforcement learning (RL) is used to find a mapping from estimated push parameters (push direction and intensity) to step parameters (step location and step execution time) that are fed to the motion generator. Successful omni-directional capture stepping for 89 % of the test cases with pushes from various directions and intensities is achieved with minimal computational effort after 500 training iterations. We evaluate our method in a dynamic simulation of the ARMAR-4 humanoid robot.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8625039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Two key questions in the context of stepping for push recovery are where to step and how to step there. In this paper we present a fast and computationally light-weight approach for capture stepping of full-sized humanoid robots. To this end, we developed an efficient parametric step motion generator based on dynamic movement primitives (DMPs) learnt from human demonstrations. Simulation-based reinforcement learning (RL) is used to find a mapping from estimated push parameters (push direction and intensity) to step parameters (step location and step execution time) that are fed to the motion generator. Successful omni-directional capture stepping for 89 % of the test cases with pushes from various directions and intensities is achieved with minimal computational effort after 500 training iterations. We evaluate our method in a dynamic simulation of the ARMAR-4 humanoid robot.
基于人体运动和仿真数据的仿人机器人高效全向捕获步进学习
在推进恢复的背景下,两个关键问题是在哪里迈出以及如何迈出那里。在本文中,我们提出了一种快速且计算量轻的方法来捕获全尺寸人形机器人的步进。为此,我们基于从人类演示中学习的动态运动原语(dmp)开发了一个高效的参数化步进运动生成器。基于仿真的强化学习(RL)用于寻找从估计的推参数(推方向和强度)到步进参数(步进位置和步进执行时间)的映射,并将其馈送给运动生成器。对于89%的测试用例,通过不同方向和强度的推动,在500次训练迭代之后,以最小的计算工作量实现了成功的全方位捕获步进。我们在ARMAR-4人形机器人的动态仿真中评估了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信