Automatic clustering of wafer spatial signatures

Wangyang Zhang, Xin Li, S. Saxena, A. Strojwas, Rob A. Rutenbar
{"title":"Automatic clustering of wafer spatial signatures","authors":"Wangyang Zhang, Xin Li, S. Saxena, A. Strojwas, Rob A. Rutenbar","doi":"10.1145/2463209.2488821","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a methodology based on unsupervised learning for automatic clustering of wafer spatial signatures to aid yield improvement. Our proposed methodology is based on three steps. First, we apply sparse regression to automatically capture wafer spatial signatures by a small number of features. Next, we apply an unsupervised hierarchical clustering algorithm to divide wafers into a few clusters where all wafers within the same cluster are similar. Finally, we develop a modified L-method to determine the appropriate number of clusters from the hierarchical clustering result. The accuracy of the proposed methodology is demonstrated by several industrial data sets of silicon measurements.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"29 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

In this paper, we propose a methodology based on unsupervised learning for automatic clustering of wafer spatial signatures to aid yield improvement. Our proposed methodology is based on three steps. First, we apply sparse regression to automatically capture wafer spatial signatures by a small number of features. Next, we apply an unsupervised hierarchical clustering algorithm to divide wafers into a few clusters where all wafers within the same cluster are similar. Finally, we develop a modified L-method to determine the appropriate number of clusters from the hierarchical clustering result. The accuracy of the proposed methodology is demonstrated by several industrial data sets of silicon measurements.
晶圆空间特征的自动聚类
在本文中,我们提出了一种基于无监督学习的晶圆空间特征自动聚类方法,以帮助提高良率。我们提出的方法基于三个步骤。首先,采用稀疏回归方法,通过少量特征自动捕获晶圆空间特征。接下来,我们应用无监督分层聚类算法将晶圆分成几个簇,其中同一簇内的所有晶圆都是相似的。最后,我们开发了一种改进的l -方法,从分层聚类结果中确定适当的聚类数量。提出的方法的准确性证明了几个工业数据集的硅测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信