Jwusheng Hu, Ming-Chih Chien, Yung-Jung Chang, Yen-Chung Chang, S. Su, Jwu-Jiun Yang, Chen-Yu Kai
{"title":"A robotic ball catcher with embedded visual servo processor","authors":"Jwusheng Hu, Ming-Chih Chien, Yung-Jung Chang, Yen-Chung Chang, S. Su, Jwu-Jiun Yang, Chen-Yu Kai","doi":"10.1109/IROS.2010.5648912","DOIUrl":null,"url":null,"abstract":"In this work we present a robotic ball catcher with embedded visual servo processor. The embedded visual servo processor with powerful parallel computing capability is used as the computation platform to track and triangulate a flying ball's position in 3D based on stereo vision. A recursive least squares algorithm for model-based path prediction of the flying ball is used to determine the catch time and position. Experimental results for real time catching of a flying ball are presented by a 6-DOF robot arm. The percentage of success rate of the robotic ball catcher was found to be approximately 60% for the ball thrown to it from five meters away.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5648912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work we present a robotic ball catcher with embedded visual servo processor. The embedded visual servo processor with powerful parallel computing capability is used as the computation platform to track and triangulate a flying ball's position in 3D based on stereo vision. A recursive least squares algorithm for model-based path prediction of the flying ball is used to determine the catch time and position. Experimental results for real time catching of a flying ball are presented by a 6-DOF robot arm. The percentage of success rate of the robotic ball catcher was found to be approximately 60% for the ball thrown to it from five meters away.