Temperature and trim effect compensation of a VCXO using a multidimensional segmented polynomial array

J. Esterline, A. Snavely
{"title":"Temperature and trim effect compensation of a VCXO using a multidimensional segmented polynomial array","authors":"J. Esterline, A. Snavely","doi":"10.1109/FCS.2016.7546745","DOIUrl":null,"url":null,"abstract":"Voltage Controlled Crystal Oscillators (VCXOs) are widely used and well known frequency control products. VCXOs are typically characterized by having wide frequency pulling ranges (greater than ±50ppm). These oscillators are also uncompensated for temperature performance. This means temperature performance of ±20ppm or more is typical over the industrial range of -40 to 85 °C. Trim effect is a skewing of the frequency versus temperature performance of a crystal oscillator as the frequency is pulled (trimmed) away from the oscillator's nominal frequency. Even though unwanted, the degradation of performance from trim effect is something generally accepted as a characteristic of VCXOs. This paper focuses on a method of compensating crystal oscillator temperature and trim effect using a multi-dimensional segmented polynomial array. The inherent trim effect has been reduced from approximately ±11ppm down to ±0.5ppm. This is a 22-fold improvement over the inherent performance. The theory of this compensation method will be discussed, and data showing the results of temperature and trim effect compensation on actual oscillators will be presented.","PeriodicalId":122928,"journal":{"name":"2016 IEEE International Frequency Control Symposium (IFCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2016.7546745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Voltage Controlled Crystal Oscillators (VCXOs) are widely used and well known frequency control products. VCXOs are typically characterized by having wide frequency pulling ranges (greater than ±50ppm). These oscillators are also uncompensated for temperature performance. This means temperature performance of ±20ppm or more is typical over the industrial range of -40 to 85 °C. Trim effect is a skewing of the frequency versus temperature performance of a crystal oscillator as the frequency is pulled (trimmed) away from the oscillator's nominal frequency. Even though unwanted, the degradation of performance from trim effect is something generally accepted as a characteristic of VCXOs. This paper focuses on a method of compensating crystal oscillator temperature and trim effect using a multi-dimensional segmented polynomial array. The inherent trim effect has been reduced from approximately ±11ppm down to ±0.5ppm. This is a 22-fold improvement over the inherent performance. The theory of this compensation method will be discussed, and data showing the results of temperature and trim effect compensation on actual oscillators will be presented.
基于多维分段多项式阵列的VCXO温度和修剪效应补偿
压控晶体振荡器(VCXOs)是一种应用广泛的频率控制产品。vcxo的典型特点是具有宽的频率拉范围(大于±50ppm)。这些振荡器也不补偿温度性能。这意味着±20ppm或更高的温度性能在-40至85°C的工业范围内是典型的。微调效应是晶体振荡器的频率与温度性能的倾斜,因为频率被拉(修剪)远离振荡器的标称频率。尽管不需要,但由于修剪效应导致的性能下降是vcxo的一个普遍接受的特征。本文研究了一种利用多维分段多项式阵列补偿晶体振荡器温度和修剪效应的方法。固有的修剪效果已经从大约±11ppm降低到±0.5ppm。这比固有性能提高了22倍。讨论了这种补偿方法的原理,并给出了实际振荡器的温度和修剪效应补偿结果的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信