Robust unsupervised nonparametric change detection of SAR images

A. Garzelli, C. Zoppetti, B. Aiazzi, S. Baronti, L. Alparone
{"title":"Robust unsupervised nonparametric change detection of SAR images","authors":"A. Garzelli, C. Zoppetti, B. Aiazzi, S. Baronti, L. Alparone","doi":"10.1109/IGARSS.2012.6351111","DOIUrl":null,"url":null,"abstract":"This paper presents an unsupervised nonparametric method for change detection in multitemporal synthetic aperture radar (SAR) imagery. The proposed method relies on a novel feature capable of capturing the structural changes between the two images and discarding almost completely the statistical changes due to speckle patterns or co-registration inaccuracies. This feature utilizes the scatterplots of the amplitude levels in the two SAR images and applies a fast version of the mean-shift (MS) algorithm to find the modes of the underlying bivariate distribution. The value of the probability density function (PDF) is translated to a value of conditional information and given to all image pixels originating such modes. Experimental results have been carried out with simulated changes and true SAR images acquired by the COSMO-SkyMed satellite constellation. The proposed feature exhibits significantly better discrimination capability than both the classical log-ratio (LR) and is particularly robust if applied to SAR images having different processing and/or acquisition angles.","PeriodicalId":193438,"journal":{"name":"2012 IEEE International Geoscience and Remote Sensing Symposium","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2012.6351111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents an unsupervised nonparametric method for change detection in multitemporal synthetic aperture radar (SAR) imagery. The proposed method relies on a novel feature capable of capturing the structural changes between the two images and discarding almost completely the statistical changes due to speckle patterns or co-registration inaccuracies. This feature utilizes the scatterplots of the amplitude levels in the two SAR images and applies a fast version of the mean-shift (MS) algorithm to find the modes of the underlying bivariate distribution. The value of the probability density function (PDF) is translated to a value of conditional information and given to all image pixels originating such modes. Experimental results have been carried out with simulated changes and true SAR images acquired by the COSMO-SkyMed satellite constellation. The proposed feature exhibits significantly better discrimination capability than both the classical log-ratio (LR) and is particularly robust if applied to SAR images having different processing and/or acquisition angles.
SAR图像鲁棒无监督非参数变化检测
提出了一种多时相合成孔径雷达(SAR)图像变化检测的无监督非参数方法。所提出的方法依赖于一种能够捕获两幅图像之间结构变化的新特征,并且几乎完全丢弃由于散斑模式或共配准不准确而导致的统计变化。该特征利用两幅SAR图像中振幅水平的散点图,并应用快速版本的mean-shift (MS)算法来查找底层二元分布的模式。所述概率密度函数(PDF)的值被转换为条件信息的值,并给定产生这种模式的所有图像像素。实验结果与cosmos - skymed卫星星座获取的真实SAR图像进行了对比。所提出的特征比传统的对数比(LR)具有更好的识别能力,如果应用于具有不同处理和/或采集角度的SAR图像,则具有特别的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信