Spectral feature extraction from EEG based motor imagery using common spatial patterns

Mustapha Moufassih, Oussama Tarahi, Soukaina Hamou, S. Agounad, Hafida Idrissi Azami
{"title":"Spectral feature extraction from EEG based motor imagery using common spatial patterns","authors":"Mustapha Moufassih, Oussama Tarahi, Soukaina Hamou, S. Agounad, Hafida Idrissi Azami","doi":"10.1109/IRASET52964.2022.9738394","DOIUrl":null,"url":null,"abstract":"Noninvasive MI-BCI (Motor imagery Brain computer interface) allows people to communicate and control external devices through EEG signals. Feature extraction is an important bloc to obtain a reliable classification accuracy of motor imagery tasks. Common spatial patterns (CSP) is a frequently used algorithm for EEG feature extraction, but its performance relies on the subject-specific frequency band. This paper shows the powerful effect of CSP in discrimination between two classes of motor imagery (left and right hand). Using projected training data on CSP this study demonstrates that subject-specific frequency bands can easily be determined. The experimental results obtained using two public EEG datasets (BCI competition IV dataset 2a and 2b) demonstrate that the subject-specific frequency bands extracted in offline analysis phase using CSP help improve the classification performance of MI-BCI.","PeriodicalId":377115,"journal":{"name":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET52964.2022.9738394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Noninvasive MI-BCI (Motor imagery Brain computer interface) allows people to communicate and control external devices through EEG signals. Feature extraction is an important bloc to obtain a reliable classification accuracy of motor imagery tasks. Common spatial patterns (CSP) is a frequently used algorithm for EEG feature extraction, but its performance relies on the subject-specific frequency band. This paper shows the powerful effect of CSP in discrimination between two classes of motor imagery (left and right hand). Using projected training data on CSP this study demonstrates that subject-specific frequency bands can easily be determined. The experimental results obtained using two public EEG datasets (BCI competition IV dataset 2a and 2b) demonstrate that the subject-specific frequency bands extracted in offline analysis phase using CSP help improve the classification performance of MI-BCI.
基于共同空间模式的脑电运动图像的频谱特征提取
无创MI-BCI(运动图像脑机接口)允许人们通过脑电图信号进行通信和控制外部设备。特征提取是获得运动图像任务可靠分类精度的重要环节。共同空间模式(CSP)是一种常用的脑电特征提取算法,但其性能依赖于受试者特定频段。本文证明了CSP在区分两类运动意象(左、右手)中的强大作用。利用CSP的投影训练数据,本研究表明可以很容易地确定特定学科的频段。使用两个公开的脑电数据集(BCI competition IV数据集2a和2b)的实验结果表明,CSP在离线分析阶段提取的受试者特定频段有助于提高MI-BCI的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信