Robust-RRT: Probabilistically-Complete Motion Planning for Uncertain Nonlinear Systems

A. Wu, T. Lew, Kiril Solovey, E. Schmerling, M. Pavone
{"title":"Robust-RRT: Probabilistically-Complete Motion Planning for Uncertain Nonlinear Systems","authors":"A. Wu, T. Lew, Kiril Solovey, E. Schmerling, M. Pavone","doi":"10.48550/arXiv.2205.07728","DOIUrl":null,"url":null,"abstract":"Robust motion planning entails computing a global motion plan that is safe under all possible uncertainty realizations, be it in the system dynamics, the robot's initial position, or with respect to external disturbances. Current approaches for robust motion planning either lack theoretical guarantees, or make restrictive assumptions on the system dynamics and uncertainty distributions. In this paper, we address these limitations by proposing the robust rapidly-exploring random-tree (Robust-RRT) algorithm, which integrates forward reachability analysis directly into sampling-based control trajectory synthesis. We prove that Robust-RRT is probabilistically complete (PC) for nonlinear Lipschitz continuous dynamical systems with bounded uncertainty. In other words, Robust-RRT eventually finds a robust motion plan that is feasible under all possible uncertainty realizations assuming such a plan exists. Our analysis applies even to unstable systems that admit only short-horizon feasible plans; this is because we explicitly consider the time evolution of reachable sets along control trajectories. Thanks to the explicit consideration of time dependency in our analysis, PC applies to unstabilizable systems. To the best of our knowledge, this is the most general PC proof for robust sampling-based motion planning, in terms of the types of uncertainties and dynamical systems it can handle. Considering that an exact computation of reachable sets can be computationally expensive for some dynamical systems, we incorporate sampling-based reachability analysis into Robust-RRT and demonstrate our robust planner on nonlinear, underactuated, and hybrid systems.","PeriodicalId":136210,"journal":{"name":"International Symposium of Robotics Research","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.07728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Robust motion planning entails computing a global motion plan that is safe under all possible uncertainty realizations, be it in the system dynamics, the robot's initial position, or with respect to external disturbances. Current approaches for robust motion planning either lack theoretical guarantees, or make restrictive assumptions on the system dynamics and uncertainty distributions. In this paper, we address these limitations by proposing the robust rapidly-exploring random-tree (Robust-RRT) algorithm, which integrates forward reachability analysis directly into sampling-based control trajectory synthesis. We prove that Robust-RRT is probabilistically complete (PC) for nonlinear Lipschitz continuous dynamical systems with bounded uncertainty. In other words, Robust-RRT eventually finds a robust motion plan that is feasible under all possible uncertainty realizations assuming such a plan exists. Our analysis applies even to unstable systems that admit only short-horizon feasible plans; this is because we explicitly consider the time evolution of reachable sets along control trajectories. Thanks to the explicit consideration of time dependency in our analysis, PC applies to unstabilizable systems. To the best of our knowledge, this is the most general PC proof for robust sampling-based motion planning, in terms of the types of uncertainties and dynamical systems it can handle. Considering that an exact computation of reachable sets can be computationally expensive for some dynamical systems, we incorporate sampling-based reachability analysis into Robust-RRT and demonstrate our robust planner on nonlinear, underactuated, and hybrid systems.
鲁棒- rrt:不确定非线性系统的概率完全运动规划
鲁棒运动规划需要计算一个全局运动计划,该计划在所有可能的不确定性实现下是安全的,无论是在系统动力学中,机器人的初始位置,还是相对于外部干扰。现有的鲁棒运动规划方法要么缺乏理论保证,要么对系统动力学和不确定性分布做出限制性假设。在本文中,我们通过提出鲁棒快速探索随机树(robust - rrt)算法来解决这些限制,该算法将前向可达性分析直接集成到基于采样的控制轨迹综合中。证明了具有有界不确定性的非线性Lipschitz连续动力系统鲁棒- rrt是概率完全的。换句话说,鲁棒- rrt最终会找到一个鲁棒运动计划,假设该计划存在,该计划在所有可能的不确定性实现下都是可行的。我们的分析甚至适用于只承认短期可行计划的不稳定系统;这是因为我们明确地考虑了可达集沿控制轨迹的时间演化。由于在我们的分析中明确考虑了时间依赖性,PC适用于不稳定系统。据我们所知,这是最一般的PC证明鲁棒采样为基础的运动规划,在类型的不确定性和动态系统,它可以处理。考虑到可达集的精确计算对于某些动态系统来说可能是计算昂贵的,我们将基于采样的可达性分析纳入鲁棒rrt,并在非线性、欠驱动和混合系统上证明了我们的鲁棒规划器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信