Detecting the Distribution of a Robotic Swarm in Uncertain Conditions

Eliashiv Cohen, Yakov Idelson, Oded Medina, N. Shvalb, Shlomi Hacohen
{"title":"Detecting the Distribution of a Robotic Swarm in Uncertain Conditions","authors":"Eliashiv Cohen, Yakov Idelson, Oded Medina, N. Shvalb, Shlomi Hacohen","doi":"10.1109/ICCMA46720.2019.8988677","DOIUrl":null,"url":null,"abstract":"Localization problem of a swarm is required for most tasks related to swarms. In many cases real world sensors possess inherent measurement error. Nevertheless, having a large set of inter-measurements may compensate for this. The paper implements Extended Kalman Filter to estimate the swarm’s distribution. Indeed, a set of simulated experiments demonstrate the algorithm robustness and simplicity. Finally, we show that the resulting error estimation is reliable.","PeriodicalId":377212,"journal":{"name":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA46720.2019.8988677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Localization problem of a swarm is required for most tasks related to swarms. In many cases real world sensors possess inherent measurement error. Nevertheless, having a large set of inter-measurements may compensate for this. The paper implements Extended Kalman Filter to estimate the swarm’s distribution. Indeed, a set of simulated experiments demonstrate the algorithm robustness and simplicity. Finally, we show that the resulting error estimation is reliable.
不确定条件下机器人群的分布检测
大多数与群体相关的任务都需要群体的定位问题。在许多情况下,真实世界的传感器具有固有的测量误差。然而,拥有大量的内部测量集可以弥补这一点。本文采用扩展卡尔曼滤波来估计蜂群的分布。实际上,一组模拟实验证明了算法的鲁棒性和简单性。最后,我们证明了得到的误差估计是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信