Parallax angle parametrization in incremental SLAM

E. Mendes, S. Lacroix, J. Solà
{"title":"Parallax angle parametrization in incremental SLAM","authors":"E. Mendes, S. Lacroix, J. Solà","doi":"10.1109/ICARCV.2016.7838805","DOIUrl":null,"url":null,"abstract":"The lack of depth information in camera images has triggered much work on their use for localization and mapping in robotics. In particular, specific landmark parametrizations that isolate the unknown depth in one variable, and that allows to handle the associated large uncertainties have been proposed. Recently, an innovative parametrization (Parallax Angle) has shown to outperform the others in the context of a Bundle Adjustment approach. This paper investigates the way to exploit this parametrization in an incremental graph-based SLAM approach, in a robotics context in which motions measures can be incorporated in the overall estimation. It presents the factors required to initialize landmarks and manage their observations. Simulation results show that the proposed algorithms are able to incrementally incorporate observations, and a discussion analyzes how the incremental updates on ISAM2 are affected by these new factors.","PeriodicalId":128828,"journal":{"name":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"1 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2016.7838805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The lack of depth information in camera images has triggered much work on their use for localization and mapping in robotics. In particular, specific landmark parametrizations that isolate the unknown depth in one variable, and that allows to handle the associated large uncertainties have been proposed. Recently, an innovative parametrization (Parallax Angle) has shown to outperform the others in the context of a Bundle Adjustment approach. This paper investigates the way to exploit this parametrization in an incremental graph-based SLAM approach, in a robotics context in which motions measures can be incorporated in the overall estimation. It presents the factors required to initialize landmarks and manage their observations. Simulation results show that the proposed algorithms are able to incrementally incorporate observations, and a discussion analyzes how the incremental updates on ISAM2 are affected by these new factors.
增量SLAM中的视差角参数化
相机图像中缺乏深度信息已经引发了许多关于它们在机器人定位和绘图中的应用的工作。特别是,提出了特定的地标参数化,将未知深度隔离在一个变量中,并允许处理相关的大不确定性。最近,一种创新的参数化(视差角)在束调整方法的背景下表现优于其他方法。本文研究了在基于增量图的SLAM方法中利用这种参数化的方法,在机器人环境中,运动测量可以被纳入整体估计。它提出了初始化地标和管理其观测所需的因素。仿真结果表明,所提出的算法能够增量地合并观测值,并讨论了这些新因素对ISAM2上增量更新的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信