FPGA Parallel Implementation of CMAC Type Neural Network with on Chip Learning

S. Brassai, L. Bakó, S. Dan
{"title":"FPGA Parallel Implementation of CMAC Type Neural Network with on Chip Learning","authors":"S. Brassai, L. Bakó, S. Dan","doi":"10.1109/SACI.2007.375494","DOIUrl":null,"url":null,"abstract":"The hardware implementation of neural networks is a new step in the evolution and use of neural networks in practical applications. The CMAC cerebellar model articulation controller is intended especially for hardware implementation, and this type of network is used successfully in the areas of robotics and control, where the real time capabilities of the network are of particular importance. The implementation of neural networks on FPGA's has several benefits, with emphasis on parallelism and the real time capabilities. This paper discusses the hardware implementation of the CMAC type neural network, the architecture and parameters and the functional modules of the hardware implemented neuro-processor.","PeriodicalId":138224,"journal":{"name":"2007 4th International Symposium on Applied Computational Intelligence and Informatics","volume":"30 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 4th International Symposium on Applied Computational Intelligence and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2007.375494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The hardware implementation of neural networks is a new step in the evolution and use of neural networks in practical applications. The CMAC cerebellar model articulation controller is intended especially for hardware implementation, and this type of network is used successfully in the areas of robotics and control, where the real time capabilities of the network are of particular importance. The implementation of neural networks on FPGA's has several benefits, with emphasis on parallelism and the real time capabilities. This paper discusses the hardware implementation of the CMAC type neural network, the architecture and parameters and the functional modules of the hardware implemented neuro-processor.
具有片上学习功能的CMAC型神经网络的FPGA并行实现
神经网络的硬件实现是神经网络在实际应用中发展和应用的一个新步骤。CMAC小脑模型关节控制器是专门为硬件实现而设计的,这种类型的网络在机器人和控制领域得到了成功的应用,在这些领域,网络的实时能力尤为重要。在FPGA上实现神经网络有几个优点,重点是并行性和实时性。本文讨论了CMAC型神经网络的硬件实现,硬件实现的神经处理器的结构、参数和功能模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信