Weighting methods for Monte-Carlo calculation of polymer configurations

F. McCrackin
{"title":"Weighting methods for Monte-Carlo calculation of polymer configurations","authors":"F. McCrackin","doi":"10.6028/JRES.076B.014","DOIUrl":null,"url":null,"abstract":"In the Rosenbluth and Rosenbluth method of computing polymer configurations, the configurations are weighted in order to remove bias of the estimated parameters of the configurations. This weighting method is investigated and generalized for importance sampling and Boltzmann factors. The estimates are found to be unbiased in the limit for an infinite sample of configurations, but to have a bias for a finite sam pit'. The standard deviations of the estimates are also derived.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1972-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.076B.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In the Rosenbluth and Rosenbluth method of computing polymer configurations, the configurations are weighted in order to remove bias of the estimated parameters of the configurations. This weighting method is investigated and generalized for importance sampling and Boltzmann factors. The estimates are found to be unbiased in the limit for an infinite sample of configurations, but to have a bias for a finite sam pit'. The standard deviations of the estimates are also derived.
蒙特卡罗计算聚合物构型的加权方法
在计算聚合物构型的Rosenbluth和Rosenbluth方法中,为了消除构型估计参数的偏差,对构型进行了加权。研究并推广了重要抽样和玻尔兹曼因子的加权方法。我们发现,对于无限个构型样本的极限,估计是无偏的,但是对于有限个同坑,估计是有偏的。还推导了估计的标准偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信