Minimum Time Search in Unmanned Aerial Vehicles using Ant Colony Optimisation based Realistic Scenarios

Karthik Gurunathan, Yadamakanti Sushmitha Reddy, R. Dash, J. L. Risco-Martín, Sara Pérez-Carabaza, E. Besada-Portas
{"title":"Minimum Time Search in Unmanned Aerial Vehicles using Ant Colony Optimisation based Realistic Scenarios","authors":"Karthik Gurunathan, Yadamakanti Sushmitha Reddy, R. Dash, J. L. Risco-Martín, Sara Pérez-Carabaza, E. Besada-Portas","doi":"10.1109/ISC251055.2020.9239065","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAV), or drones, are aircrafts without a human pilot on board. UAVs find a target in minimum time using Minimum Time Search (MTS) methods. Different optimisation paradigms, such as cross-entropy optimisation (CEO) and ant-colony optimisation (ACO) can be used for MTS. In this work, a set of simulation scenarios has been designed to test the ACO solution to the MTS problem. Simulations performed for each scenario take into account a heuristic function and its effect on the probability of detection of target and estimated time for detection. The results obtained for various scenarios based on external and internal factors in UAV trajectory planning (size of search grid, target distribution, etc.) are compared to categorise the best set of such factors across four input domains. Results show a huge variance in the role played by the heuristic function and choice of feature thresholds for each scenario.","PeriodicalId":201808,"journal":{"name":"2020 IEEE International Smart Cities Conference (ISC2)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC251055.2020.9239065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicles (UAV), or drones, are aircrafts without a human pilot on board. UAVs find a target in minimum time using Minimum Time Search (MTS) methods. Different optimisation paradigms, such as cross-entropy optimisation (CEO) and ant-colony optimisation (ACO) can be used for MTS. In this work, a set of simulation scenarios has been designed to test the ACO solution to the MTS problem. Simulations performed for each scenario take into account a heuristic function and its effect on the probability of detection of target and estimated time for detection. The results obtained for various scenarios based on external and internal factors in UAV trajectory planning (size of search grid, target distribution, etc.) are compared to categorise the best set of such factors across four input domains. Results show a huge variance in the role played by the heuristic function and choice of feature thresholds for each scenario.
基于蚁群优化的无人机最小时间搜索
无人驾驶飞行器(UAV)或无人驾驶飞机是没有人类驾驶员的飞机。无人机采用最小时间搜索(MTS)方法在最短时间内找到目标。不同的优化范例,如交叉熵优化(CEO)和蚁群优化(ACO)可用于MTS。在这项工作中,设计了一组模拟场景来测试蚁群优化解决MTS问题。对每个场景进行的模拟都考虑了启发式函数及其对目标检测概率和估计检测时间的影响。在UAV轨迹规划中基于外部和内部因素(搜索网格的大小,目标分布等)的各种场景中获得的结果进行比较,以便在四个输入域中对这些因素的最佳集合进行分类。结果表明,启发式函数和特征阈值的选择在每个场景中所起的作用存在巨大差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信