Image tampering detection using local phase based operator

Saurabh Agarwal, S. Chand
{"title":"Image tampering detection using local phase based operator","authors":"Saurabh Agarwal, S. Chand","doi":"10.1109/ICETEESES.2016.7581409","DOIUrl":null,"url":null,"abstract":"Image tampering detection is important due to many incidences of tampered images misuse. In this paper, we propose a hybrid approach for image tampering detection using range filter and texture descriptor. First we highlights important details of the image using range filtering. The range filter highlights the edges, contours and important details of the objects in an image. Further we apply texture descriptor based on local phase of the image in frequency domain is applied to extract crucial features of the image. This texture descriptor has high descriptive ability that provides sufficient image internal statistical information for detecting image forgery. The CASIA v1.0 database is used for performance estimation of our hybrid approach. For classification between tampered and original images Spectral Regression Discriminant Analysis and Support Vector Machine are used as a classifier. Our method outperforms some of the state of the art methods.","PeriodicalId":322442,"journal":{"name":"2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETEESES.2016.7581409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image tampering detection is important due to many incidences of tampered images misuse. In this paper, we propose a hybrid approach for image tampering detection using range filter and texture descriptor. First we highlights important details of the image using range filtering. The range filter highlights the edges, contours and important details of the objects in an image. Further we apply texture descriptor based on local phase of the image in frequency domain is applied to extract crucial features of the image. This texture descriptor has high descriptive ability that provides sufficient image internal statistical information for detecting image forgery. The CASIA v1.0 database is used for performance estimation of our hybrid approach. For classification between tampered and original images Spectral Regression Discriminant Analysis and Support Vector Machine are used as a classifier. Our method outperforms some of the state of the art methods.
基于局部相位算子的图像篡改检测
由于篡改图像被误用的事件很多,图像篡改检测非常重要。本文提出了一种基于距离滤波器和纹理描述符的混合图像篡改检测方法。首先,我们使用范围滤波突出图像的重要细节。范围过滤器突出显示图像中物体的边缘、轮廓和重要细节。在频域应用基于图像局部相位的纹理描述子提取图像的关键特征。该纹理描述符具有较高的描述能力,为检测图像伪造提供了充分的图像内部统计信息。CASIA v1.0数据库用于我们的混合方法的性能评估。对于篡改图像和原始图像的分类,使用了光谱回归判别分析和支持向量机作为分类器。我们的方法优于一些最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信