{"title":"Impact of Corner Rounding on Quantum Confinement in GAA Nanosheet FETs for Advanced Technology Nodes","authors":"Anirban Kar, S. Sarker, A. Dasgupta, Y. Chauhan","doi":"10.1109/DRC55272.2022.9855803","DOIUrl":null,"url":null,"abstract":"Due to the better electrostatic control, semiconductor industry has already adopted gate-all-around FETs (GAAFETs) for upcoming technology nodes. Effects like sub-band quantization, threshold voltage shift, the geometry-dependent density of states (DOS) etc., are predominant in the terminal characteristics of GAAFETs due to strong geometrical confinement, which has a significant impact on both analog and RF characteristics of the device. In this paper, for the first time we demonstrate the impact of corner rounding radius $(r_{c})$ on quantum confinement effects which alter the sub-band quantization levels of the channel. We have used a 2D Schrodinger solver to obtain the sub-band energy levels and used BSIM-CMG framework to predict the effect of sub-band quantization on the terminal characteristics of the device viz. capacitances, drain currents and transconductances with respect to $r_{c}$ variations.","PeriodicalId":200504,"journal":{"name":"2022 Device Research Conference (DRC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC55272.2022.9855803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the better electrostatic control, semiconductor industry has already adopted gate-all-around FETs (GAAFETs) for upcoming technology nodes. Effects like sub-band quantization, threshold voltage shift, the geometry-dependent density of states (DOS) etc., are predominant in the terminal characteristics of GAAFETs due to strong geometrical confinement, which has a significant impact on both analog and RF characteristics of the device. In this paper, for the first time we demonstrate the impact of corner rounding radius $(r_{c})$ on quantum confinement effects which alter the sub-band quantization levels of the channel. We have used a 2D Schrodinger solver to obtain the sub-band energy levels and used BSIM-CMG framework to predict the effect of sub-band quantization on the terminal characteristics of the device viz. capacitances, drain currents and transconductances with respect to $r_{c}$ variations.