{"title":"Memristor based delay element using current starved inverter","authors":"Siti Musliha Ajmal Binti Mokhtar, W. Abdullah","doi":"10.1109/RSM.2013.6706478","DOIUrl":null,"url":null,"abstract":"This paper will first review on some applications of newly found passive element, the memristor. Utilizing the beneficial characteristic of memristor where it can remember its last state, more and more improvements on today electronic designs has been proposed. However, it is crucial to observe the behavior of memristor model before applying into circuits, especially when the memristor is coupled with other devices. In this paper, LTspice memristor model is used to simulate memristor behavior and applied to the basic delay element circuit. The circuit used a tristate inverter as the delay element. It controls the current flowing to the parasitic capacitor, thus controlling the delay. The compatibility of memristor with the delay element is also in consideration to ensure the functionality of the circuits. At the end, a basic delay element using inverter and memristor is presented. This paper is divided into 4 sections, including the introduction where few examples of memristor applications are explained. It follows by next section where the inverter delay characteristic is narrated. Section 3 is about a mathematical model of memristor that been used to provide a specific memristor resistance in order to get certain delay value during simulation. Using LT spice, a memristor based delay circuit design is then proposed and the delay is observed by circuit simulation. In conclusion, the calculated R and delay value is then compared to the simulation result in order to verify circuit functionality.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"325 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper will first review on some applications of newly found passive element, the memristor. Utilizing the beneficial characteristic of memristor where it can remember its last state, more and more improvements on today electronic designs has been proposed. However, it is crucial to observe the behavior of memristor model before applying into circuits, especially when the memristor is coupled with other devices. In this paper, LTspice memristor model is used to simulate memristor behavior and applied to the basic delay element circuit. The circuit used a tristate inverter as the delay element. It controls the current flowing to the parasitic capacitor, thus controlling the delay. The compatibility of memristor with the delay element is also in consideration to ensure the functionality of the circuits. At the end, a basic delay element using inverter and memristor is presented. This paper is divided into 4 sections, including the introduction where few examples of memristor applications are explained. It follows by next section where the inverter delay characteristic is narrated. Section 3 is about a mathematical model of memristor that been used to provide a specific memristor resistance in order to get certain delay value during simulation. Using LT spice, a memristor based delay circuit design is then proposed and the delay is observed by circuit simulation. In conclusion, the calculated R and delay value is then compared to the simulation result in order to verify circuit functionality.