Fault tolerant controller design for component faults of a small scale unmanned aerial vehicle

V. K. Kaliappan, Hanmaro Yong, A. Budiyono, D. Min
{"title":"Fault tolerant controller design for component faults of a small scale unmanned aerial vehicle","authors":"V. K. Kaliappan, Hanmaro Yong, A. Budiyono, D. Min","doi":"10.1109/URAI.2011.6145937","DOIUrl":null,"url":null,"abstract":"In this paper additive fault detection and isolation method coupled with fault tolerant control architecture are developed in order to deal with component faults for a rotorcraft based unmanned aerial vehicle (RUAV). The failure considered is malfunction with internal components of the helicopter which occurs during the maneuvers: rotor angular rate variations, etc. These faults lead from trivial to catastrophic damage of the system. The proposed fault detection and reconfiguration control is based on a parameter estimation approach which drives a reconfigurable control system (RCS) build with the Pseudo-inverse method. The complete setup is implemented under Hardware-in-the-loop-simulation (HILS). The PC104 board with QNX RTOS platform is used for simulation. Simulation results illustrate the efficiency and effectiveness of the proposed approach.","PeriodicalId":385925,"journal":{"name":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2011.6145937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper additive fault detection and isolation method coupled with fault tolerant control architecture are developed in order to deal with component faults for a rotorcraft based unmanned aerial vehicle (RUAV). The failure considered is malfunction with internal components of the helicopter which occurs during the maneuvers: rotor angular rate variations, etc. These faults lead from trivial to catastrophic damage of the system. The proposed fault detection and reconfiguration control is based on a parameter estimation approach which drives a reconfigurable control system (RCS) build with the Pseudo-inverse method. The complete setup is implemented under Hardware-in-the-loop-simulation (HILS). The PC104 board with QNX RTOS platform is used for simulation. Simulation results illustrate the efficiency and effectiveness of the proposed approach.
小型无人机部件故障容错控制器设计
针对旋翼无人机的部件故障,提出了一种结合容错控制体系结构的加性故障检测与隔离方法。所考虑的故障是直升机内部部件在机动过程中发生的故障:旋翼角速率变化等。这些故障会对系统造成从微不足道到灾难性的破坏。提出的故障检测和重构控制基于参数估计方法,该方法驱动伪逆方法构建可重构控制系统。完整的设置是在硬件在环仿真(HILS)下实现的。采用QNX RTOS平台的PC104板进行仿真。仿真结果验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信