Generating anticipation in robot motion

M. Gielniak, A. Thomaz
{"title":"Generating anticipation in robot motion","authors":"M. Gielniak, A. Thomaz","doi":"10.1109/ROMAN.2011.6005255","DOIUrl":null,"url":null,"abstract":"Robots that display anticipatory motion provide their human partners with greater time to respond in interactive tasks because human partners are aware of robot intent earlier. We create anticipatory motion autonomously from a single motion exemplar by extracting hand and body symbols that communicate motion intent and moving them earlier in the motion. We validate that our algorithm extracts the most salient frame (i.e. the correct symbol) which is the most informative about motion intent to human observers. Furthermore, we show that anticipatory variants allow humans to discern motion intent sooner than motions without anticipation, and that humans are able to reliably predict motion intent prior to the symbol frame when motion is anticipatory. Finally, we quantified the time range for robot motion when humans can perceive intent more accurately and the collaborative social benefits of anticipatory motion are greatest.","PeriodicalId":408015,"journal":{"name":"2011 RO-MAN","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 RO-MAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2011.6005255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

Robots that display anticipatory motion provide their human partners with greater time to respond in interactive tasks because human partners are aware of robot intent earlier. We create anticipatory motion autonomously from a single motion exemplar by extracting hand and body symbols that communicate motion intent and moving them earlier in the motion. We validate that our algorithm extracts the most salient frame (i.e. the correct symbol) which is the most informative about motion intent to human observers. Furthermore, we show that anticipatory variants allow humans to discern motion intent sooner than motions without anticipation, and that humans are able to reliably predict motion intent prior to the symbol frame when motion is anticipatory. Finally, we quantified the time range for robot motion when humans can perceive intent more accurately and the collaborative social benefits of anticipatory motion are greatest.
在机器人运动中产生预期
表现出预期运动的机器人为其人类伙伴提供了更多的时间来响应交互式任务,因为人类伙伴更早地意识到机器人的意图。我们通过提取传达运动意图的手和身体符号,并在运动中更早地移动它们,从单个运动范例中自主地创建预期运动。我们验证了我们的算法提取最显著的帧(即正确的符号),这对人类观察者来说是关于运动意图的最重要的信息。此外,我们表明,预期变体允许人类比没有预期的运动更快地识别运动意图,并且当运动是预期的时,人类能够在符号框架之前可靠地预测运动意图。最后,我们量化了人类能够更准确地感知意图和预期运动的协同社会效益最大的机器人运动的时间范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信