Deep Learning Models for Skeleton-Based Action Recognition for UAVs

Dinh-Tan Pham, Van-Nam Hoang, Viet-Duc Le, Tien Nguyen, Thanh-Hai Tran, Hai Vu, Van-Hung Le, Thi-Lan Le
{"title":"Deep Learning Models for Skeleton-Based Action Recognition for UAVs","authors":"Dinh-Tan Pham, Van-Nam Hoang, Viet-Duc Le, Tien Nguyen, Thanh-Hai Tran, Hai Vu, Van-Hung Le, Thi-Lan Le","doi":"10.1109/ICCE55644.2022.9852103","DOIUrl":null,"url":null,"abstract":"Human action recognition (HAR) is an important task for UAVs for instant decision-making from captured videos. HAR for UAVs is a challenging task due to the UAVs’ motion, attitudes, and view changes during flight. Moreover, UAVs’ video sequences may suffer from blurs and low resolution. All these issues cause difficulty in HAR for UAVs, necessitating the quest for the HAR method that considers UAV data characteristics. In this paper, we revisit some state-of-the-art deep learning methods and evaluate their performance on the UAV-Human dataset- the largest public UAV dataset up to now. Based on the evaluation, we propose a new framework that combines AAGCN and MS-G3D through a Feature Fusion module for data pre-processing in all streams. Experimental results show that our proposed method outperforms state-of-the-art methods on the UAV-Human dataset.","PeriodicalId":388547,"journal":{"name":"2022 IEEE Ninth International Conference on Communications and Electronics (ICCE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Ninth International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE55644.2022.9852103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Human action recognition (HAR) is an important task for UAVs for instant decision-making from captured videos. HAR for UAVs is a challenging task due to the UAVs’ motion, attitudes, and view changes during flight. Moreover, UAVs’ video sequences may suffer from blurs and low resolution. All these issues cause difficulty in HAR for UAVs, necessitating the quest for the HAR method that considers UAV data characteristics. In this paper, we revisit some state-of-the-art deep learning methods and evaluate their performance on the UAV-Human dataset- the largest public UAV dataset up to now. Based on the evaluation, we propose a new framework that combines AAGCN and MS-G3D through a Feature Fusion module for data pre-processing in all streams. Experimental results show that our proposed method outperforms state-of-the-art methods on the UAV-Human dataset.
无人机基于骨架动作识别的深度学习模型
人体动作识别(HAR)是无人机从捕获的视频中进行即时决策的重要任务。由于无人机在飞行过程中的运动、姿态和视角变化,HAR是一项具有挑战性的任务。此外,无人机的视频序列可能会出现模糊和低分辨率。所有这些问题都给无人机的HAR研究带来了困难,因此需要探索考虑无人机数据特征的HAR方法。在本文中,我们回顾了一些最先进的深度学习方法,并评估了它们在UAV- human数据集(迄今为止最大的公共无人机数据集)上的性能。在此基础上,我们提出了一种结合AAGCN和MS-G3D的新框架,通过特征融合模块对所有流的数据进行预处理。实验结果表明,我们提出的方法在无人机-人类数据集上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信