{"title":"Multifunction Fractional Inverse Filter Based on OTRA","authors":"Nariman A. Khali, L. Said, A. Radwan, A. Soliman","doi":"10.1109/NILES.2019.8909326","DOIUrl":null,"url":null,"abstract":"This paper proposes a generalized topology of a fractional-order inverse filter (FOF) using operational transresistance amplifiers (OTRA) block. Seven different configurations are extracted from the introduced topology employing generalized admittances. The generalized admittances increase the flexibility to provide different types of FOFs such as inverse fractional high pass filter (FHPF), inverse fractional low pass filter (FLPF), inverse fractional bandpass filter (FBPF), and inverse fractional notch filter (FNF). Numerical and PSPICE simulation results are presented for selected cases to approve the theoretical findings. The fractional-order parameters increase design flexibility and controllability, which are validated experimentally.","PeriodicalId":330822,"journal":{"name":"2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES.2019.8909326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper proposes a generalized topology of a fractional-order inverse filter (FOF) using operational transresistance amplifiers (OTRA) block. Seven different configurations are extracted from the introduced topology employing generalized admittances. The generalized admittances increase the flexibility to provide different types of FOFs such as inverse fractional high pass filter (FHPF), inverse fractional low pass filter (FLPF), inverse fractional bandpass filter (FBPF), and inverse fractional notch filter (FNF). Numerical and PSPICE simulation results are presented for selected cases to approve the theoretical findings. The fractional-order parameters increase design flexibility and controllability, which are validated experimentally.