A modified Newton's method for rational Riccati equations arising in stochastic control

E. Chu, Tie-xiang Li, Wen-Wei Lin, Chang-Yi Weng
{"title":"A modified Newton's method for rational Riccati equations arising in stochastic control","authors":"E. Chu, Tie-xiang Li, Wen-Wei Lin, Chang-Yi Weng","doi":"10.1109/CCCA.2011.6031219","DOIUrl":null,"url":null,"abstract":"We consider the solution of the rational matrix equations, or generalized algebraic Riccati equations with rational terms, arising in stochastic optimal control in continuous- and discrete-time. Fixed-point iteration and (modified) Newton's methods will be considered. In particular, the convergence results of a new modified Newton's method, for both continuous- and discrete-time rational Riccati equations, will be presented.","PeriodicalId":259067,"journal":{"name":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCA.2011.6031219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the solution of the rational matrix equations, or generalized algebraic Riccati equations with rational terms, arising in stochastic optimal control in continuous- and discrete-time. Fixed-point iteration and (modified) Newton's methods will be considered. In particular, the convergence results of a new modified Newton's method, for both continuous- and discrete-time rational Riccati equations, will be presented.
随机控制中有理里卡第方程的改进牛顿法
研究了连续时间和离散时间随机最优控制中出现的有理数矩阵方程或有理数项的广义代数Riccati方程的解。将考虑不动点迭代和(改进的)牛顿方法。特别地,一个新的改进牛顿方法的收敛结果,对于连续和离散时间有理里卡蒂方程,将被提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信