{"title":"Analysis for interference-based capacity of vehicular ad hoc networks","authors":"Minming Ni, Jian Yu, Hao Wu, Z. Zhong","doi":"10.1109/ICCVE.2014.7297606","DOIUrl":null,"url":null,"abstract":"In view of the various quality of service (QoS) requirements raised by the different applications of vehicular ad hoc networks (VANETs), the characteristic of communication capacity is vital for the design and implement of the Intelligent Transportation System (ITS). Although some scaling law-based results had already been obtained for VANETs to describe the general performance changing pattern when the total number of network nodes goes to infinity, they cannot be used directly to estimate the actual capacity of a communication pair or the entire network. To make up with this disadvantage, a interference-based capacity analysis is finished in this paper for the VANETs scenario. For representing the unique constraint of inter-vehicle distance, which directly affects both the signal and interference power decaying, the car-following model is used to describe the vehicles' mobility feature. Based on that, a series of probability characteristics are derived for a general interfering scenario, which finally leads to the expected VANET capacity. We believe the new results obtained in this paper will provide useful guidelines for the deployment of future VANETs.","PeriodicalId":171304,"journal":{"name":"2014 International Conference on Connected Vehicles and Expo (ICCVE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE.2014.7297606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In view of the various quality of service (QoS) requirements raised by the different applications of vehicular ad hoc networks (VANETs), the characteristic of communication capacity is vital for the design and implement of the Intelligent Transportation System (ITS). Although some scaling law-based results had already been obtained for VANETs to describe the general performance changing pattern when the total number of network nodes goes to infinity, they cannot be used directly to estimate the actual capacity of a communication pair or the entire network. To make up with this disadvantage, a interference-based capacity analysis is finished in this paper for the VANETs scenario. For representing the unique constraint of inter-vehicle distance, which directly affects both the signal and interference power decaying, the car-following model is used to describe the vehicles' mobility feature. Based on that, a series of probability characteristics are derived for a general interfering scenario, which finally leads to the expected VANET capacity. We believe the new results obtained in this paper will provide useful guidelines for the deployment of future VANETs.