Optical Nonlinearities of Guest-Host-Polymer Structures

K. Singer
{"title":"Optical Nonlinearities of Guest-Host-Polymer Structures","authors":"K. Singer","doi":"10.1364/nlopm.1988.mb4","DOIUrl":null,"url":null,"abstract":"Until recently, attempts to take advantage of the large second-order optical nonlinearities of certain conjugated organic molecules in devices were limited to neat crystalline materials, since the requirements for a noncentrosymmetric bulk phase could be met with molecular and polymeric crystals that happen to condense in a noncentrosymmetric point group.[1] The large dipoles that are often observed in these molecules made the growth of optical quality and robust crystals difficult. More recently, mixed systems consisting of the nonlinear optical molecules incorporated into polymer glasses, liquid crystals, and liquid crystal polymers have been investigated.[2] The difficulties in processing that are required to obtain optical quality materials are reduced. For second-order nonlinearities, an alignment process, such as electric field poling, is required to break the center of symmetry inherent in these materials. However, the reduction in number density and alignment attainable with realistic poling fields requires molecules with exceptionally large nonlinear optical susceptibilities in order to obtain bulk materials with nonlinear coefficients large enough to produce sensible devices.","PeriodicalId":208307,"journal":{"name":"Nonlinear Optical Properties of Materials","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optical Properties of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/nlopm.1988.mb4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Until recently, attempts to take advantage of the large second-order optical nonlinearities of certain conjugated organic molecules in devices were limited to neat crystalline materials, since the requirements for a noncentrosymmetric bulk phase could be met with molecular and polymeric crystals that happen to condense in a noncentrosymmetric point group.[1] The large dipoles that are often observed in these molecules made the growth of optical quality and robust crystals difficult. More recently, mixed systems consisting of the nonlinear optical molecules incorporated into polymer glasses, liquid crystals, and liquid crystal polymers have been investigated.[2] The difficulties in processing that are required to obtain optical quality materials are reduced. For second-order nonlinearities, an alignment process, such as electric field poling, is required to break the center of symmetry inherent in these materials. However, the reduction in number density and alignment attainable with realistic poling fields requires molecules with exceptionally large nonlinear optical susceptibilities in order to obtain bulk materials with nonlinear coefficients large enough to produce sensible devices.
客-主-聚合物结构的光学非线性
直到最近,利用某些共轭有机分子在器件中的大二阶光学非线性的尝试仅限于整齐的晶体材料,因为非中心对称体相的要求可以通过碰巧在非中心对称点群中缩聚的分子和聚合物晶体来满足。[1]在这些分子中经常观察到的大偶极子使得光学质量和坚固晶体的生长变得困难。最近,由非线性光学分子结合到聚合物玻璃、液晶和液晶聚合物中组成的混合系统已经被研究。[2]降低了获得光学质量材料所需的加工难度。对于二阶非线性,需要一个对准过程,如电场极化,来打破这些材料固有的对称中心。然而,在实际极化场中可以实现的数量密度和排列的减少需要具有特别大的非线性光学磁化率的分子,以便获得具有足够大的非线性系数的块状材料来生产敏感器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信