D. L. Wigand, Pouya Mohammadi, E. Hoffman, N. Tsagarakis, Jochen J. Steil, S. Wrede
{"title":"An open-source architecture for simulation, execution and analysis of real-time robotics systems","authors":"D. L. Wigand, Pouya Mohammadi, E. Hoffman, N. Tsagarakis, Jochen J. Steil, S. Wrede","doi":"10.1109/SIMPAR.2018.8376277","DOIUrl":null,"url":null,"abstract":"The specification and analysis of the timing are an integral part of a robotics system that requires to be highly reliable. Especially since the demand for robots, which are applied in collaborative environments, is increasing drastically, robots need to be even more reliable and safe. In this paper, we propose a workflow for timing specification and analysis of real-time sensitive component-based robotics systems. Further, we introduce CoSiMA, a C++ based architecture that combines technologies, which are well-known in the domain of robotics. CoSiMA offers the ability to model, simulate, deploy, and analyze a robotics system on different robotic platforms. In addition to that, it offers a real-time safe mechanism to collect execution time data of a system, run in simulation or on the real hardware, to investigate and ensure the desired behavior of the robot. In order to depict the proposed workflow, we implemented an experimental system using CoSiMA, which lets the humanoid robot COMAN perform a Zero Moment Point-based walk on a straight line.","PeriodicalId":156498,"journal":{"name":"2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIMPAR.2018.8376277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The specification and analysis of the timing are an integral part of a robotics system that requires to be highly reliable. Especially since the demand for robots, which are applied in collaborative environments, is increasing drastically, robots need to be even more reliable and safe. In this paper, we propose a workflow for timing specification and analysis of real-time sensitive component-based robotics systems. Further, we introduce CoSiMA, a C++ based architecture that combines technologies, which are well-known in the domain of robotics. CoSiMA offers the ability to model, simulate, deploy, and analyze a robotics system on different robotic platforms. In addition to that, it offers a real-time safe mechanism to collect execution time data of a system, run in simulation or on the real hardware, to investigate and ensure the desired behavior of the robot. In order to depict the proposed workflow, we implemented an experimental system using CoSiMA, which lets the humanoid robot COMAN perform a Zero Moment Point-based walk on a straight line.