Band gap reduction in InAsN alloy

T. Chu, Hao-Hsiung Lin, D. Shih
{"title":"Band gap reduction in InAsN alloy","authors":"T. Chu, Hao-Hsiung Lin, D. Shih","doi":"10.1109/ICIPRM.2002.1014351","DOIUrl":null,"url":null,"abstract":"We report the absorption and photoluminescence (PL) properties of InAsN alloys grown by gas source molecular beam epitaxy. A calculation based on the band anticrossing model was used to evaluate the Burstein-Moss effect and the band renormalization effect due to the high residual carrier density in the alloy and also the original band gap energy. It can be seen from our calculation that the broad linewidths of the PL spectra are due to the Burstein-Moss effect, and the high-energy edges of these spectra are consistent with the results from absorption measurements. The low-energy edges of PL spectra are also shown to be close to the calculated original band gap energy.","PeriodicalId":145425,"journal":{"name":"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2002.1014351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We report the absorption and photoluminescence (PL) properties of InAsN alloys grown by gas source molecular beam epitaxy. A calculation based on the band anticrossing model was used to evaluate the Burstein-Moss effect and the band renormalization effect due to the high residual carrier density in the alloy and also the original band gap energy. It can be seen from our calculation that the broad linewidths of the PL spectra are due to the Burstein-Moss effect, and the high-energy edges of these spectra are consistent with the results from absorption measurements. The low-energy edges of PL spectra are also shown to be close to the calculated original band gap energy.
InAsN合金带隙的减小
报道了气源分子束外延生长的InAsN合金的吸收和光致发光(PL)性能。基于能带抗交叉模型计算了由于合金中残余载流子密度高和原始带隙能量大而产生的Burstein-Moss效应和能带重整效应。从我们的计算中可以看出,PL光谱的宽线宽是由于Burstein-Moss效应造成的,这些光谱的高能边缘与吸收测量的结果一致。PL光谱的低能边缘也显示出与计算的原始带隙能量接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信